These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36731138)

  • 41. Neural implicit surface reconstruction of freehand 3D ultrasound volume with geometric constraints.
    Chen H; Kumaralingam L; Zhang S; Song S; Zhang F; Zhang H; Pham TT; Punithakumar K; Lou EHM; Zhang Y; Le LH; Zheng R
    Med Image Anal; 2024 Dec; 98():103305. PubMed ID: 39168075
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvement of 3-D Ultrasound Spine Imaging Technique Using Fast Reconstruction Algorithm.
    Chen HB; Zheng R; Qian LY; Liu FY; Song S; Zeng HY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3104-3113. PubMed ID: 34106851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.
    Kumar D; Hariharan H; Faizy TD; Borchert P; Siemonsen S; Fiehler J; Reddy R; Sedlacik J
    Neuroimage; 2018 Sep; 178():583-601. PubMed ID: 29763672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation.
    Riva M; Hennersperger C; Milletari F; Katouzian A; Pessina F; Gutierrez-Becker B; Castellano A; Navab N; Bello L
    Int J Comput Assist Radiol Surg; 2017 Oct; 12(10):1711-1725. PubMed ID: 28391583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas.
    Gravel P; Verhaeghe J; Reader AJ
    Phys Med Biol; 2013 Jan; 58(1):105-26. PubMed ID: 23221063
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D ultrasound reconstruction algorithms from analog and digital data.
    Solberg OV; Lindseth F; Bø LE; Muller S; Bakeng JB; Tangen GA; Hernes TA
    Ultrasonics; 2011 May; 51(4):405-19. PubMed ID: 21147493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
    Yu W; Chu C; Tannast M; Zheng G
    Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1673-85. PubMed ID: 27038965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [A proposal for the use of tridimensional reconstruction in oncology to better assess tumor stage and response to therapy].
    Guelfi MR; Masoni M; Torelli G; Fonda S; Caramella D
    Radiol Med; 1994 May; 87(5):669-76. PubMed ID: 7516562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated segmentation and interpolation of sparse data.
    Paiement A; Mirmehdi M; Xie X; Hamilton MC
    IEEE Trans Image Process; 2014 Jan; 23(1):110-25. PubMed ID: 24158475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. WE-C-217BCD-05: A Novel Interpolation Method for the 3D Reconstruction of Cell Structures.
    Sa Y; Zhang Y; Li R; Huang Y; Zhang Y; Hu X; Feng Y
    Med Phys; 2012 Jun; 39(6Part27):3950. PubMed ID: 28519972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging.
    Hossain MM; AlMuhanna K; Zhao L; Lal BK; Sikdar S
    Med Phys; 2015 Apr; 42(4):2029-43. PubMed ID: 25832093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D surface reconstruction of the femur and tibia from parallel 2D contours.
    Lin B; Jin D; Socorro Borges MA
    J Orthop Surg Res; 2022 Mar; 17(1):145. PubMed ID: 35248091
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices.
    Kainz B; Steinberger M; Wein W; Kuklisova-Murgasova M; Malamateniou C; Keraudren K; Torsney-Weir T; Rutherford M; Aljabar P; Hajnal JV; Rueckert D
    IEEE Trans Med Imaging; 2015 Sep; 34(9):1901-13. PubMed ID: 25807565
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Registration of freehand 3D ultrasound and magnetic resonance liver images.
    Penney GP; Blackall JM; Hamady MS; Sabharwal T; Adam A; Hawkes DJ
    Med Image Anal; 2004 Mar; 8(1):81-91. PubMed ID: 14644148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tomographic reconstruction using an adaptive tetrahedral mesh defined by a point cloud.
    Sitek A; Huesman RH; Gullberg GT
    IEEE Trans Med Imaging; 2006 Sep; 25(9):1172-9. PubMed ID: 16967802
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A System for Reproducible 3D Ultrasound Measurements of Skeletal Muscles.
    Sahrmann AS; Handsfield GG; Gizzi L; Gerlach J; Verl A; Besier TF; Rohrle O
    IEEE Trans Biomed Eng; 2024 Jul; 71(7):2022-2032. PubMed ID: 38285583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D reconstruction of ultrasound scanned data for tissue mimicking material sample.
    Zhu H; Yang P; Yao T
    Biomed Mater Eng; 2014; 24(6):2771-81. PubMed ID: 25226982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Practical implementation of tetrahedral mesh reconstruction in emission tomography.
    Boutchko R; Sitek A; Gullberg GT
    Phys Med Biol; 2013 May; 58(9):3001-22. PubMed ID: 23588373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data.
    San José-Estépar R; Martín-Fernández M; Caballero-Martínez PP; Alberola-López C; Ruiz-Alzola J
    Ultrasound Med Biol; 2003 Feb; 29(2):255-69. PubMed ID: 12659913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.