These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Effect of two length scales on the properties of MgB(2) for arbitrary applied magnetic field. Karmakar M; Dey B J Phys Condens Matter; 2010 May; 22(20):205701. PubMed ID: 21393710 [TBL] [Abstract][Full Text] [Related]
6. Gauge field fluctuations and first-order phase transition in color superconductivity. Giannakis I; Hou D; Ren HC; Rischke DH Phys Rev Lett; 2004 Dec; 93(23):232301. PubMed ID: 15601149 [TBL] [Abstract][Full Text] [Related]
7. Vortex lattice structural transitions: a Ginzburg-Landau model approach. Klironomos AD; Dorsey AT Phys Rev Lett; 2003 Aug; 91(9):097002. PubMed ID: 14525203 [TBL] [Abstract][Full Text] [Related]
8. Interface and vortex motion in the two-component complex dissipative Ginzburg-Landau equation in two-dimensional space. Yabunaka S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042925. PubMed ID: 25375585 [TBL] [Abstract][Full Text] [Related]
9. Analytical approach to the drift of the tips of spiral waves in the complex Ginzburg-Landau equation. Zhang S; Hu B; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016214. PubMed ID: 12636592 [TBL] [Abstract][Full Text] [Related]
10. Vortex glass and vortex liquid in oscillatory media. Brito C; Aranson IS; Chaté H Phys Rev Lett; 2003 Feb; 90(6):068301. PubMed ID: 12633333 [TBL] [Abstract][Full Text] [Related]
11. Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation. Skryabin DV; Vladimirov AG Phys Rev Lett; 2002 Jul; 89(4):044101. PubMed ID: 12144483 [TBL] [Abstract][Full Text] [Related]
12. Symmetric and asymmetric vortex-antivortex molecules in a fourfold superconducting geometry. Geurts R; Milosević MV; Peeters FM Phys Rev Lett; 2006 Sep; 97(13):137002. PubMed ID: 17026064 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of Vortex Matter in 2D Gapless Superconducting Materials with Impurities. Pashkovskaia VD; Duarte ECS; Zadorosny R; Sardella E; Abrameshin DA; Vasenko AS; Saraiva TT J Phys Chem Lett; 2024 Oct; 15(43):10742-10748. PubMed ID: 39422296 [TBL] [Abstract][Full Text] [Related]
14. Microscopic derivation of Ginzburg-Landau theory and the BCS critical temperature shift in general external fields. Deuchert A; Hainzl C; Maier MO Calc Var Partial Differ Equ; 2023; 62(7):203. PubMed ID: 37525689 [TBL] [Abstract][Full Text] [Related]
15. Why Do Ferroelectrics Exhibit Negative Capacitance? Hoffmann M; Ravindran PV; Khan AI Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31766263 [TBL] [Abstract][Full Text] [Related]
16. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations. Palonen H; Jäykkä J; Paturi P J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237 [TBL] [Abstract][Full Text] [Related]
17. Pairing state symmetries of high- T(c) superconductors: a comparative study using two Ginzburg-Landau models. Karmakar M J Phys Condens Matter; 2009 Apr; 21(17):175702. PubMed ID: 21825430 [TBL] [Abstract][Full Text] [Related]
18. A Predictive Theory for Domain Walls in Oxide Ferroelectrics Based on Interatomic Interactions and its Implications for Collective Material Properties. Samanta A; Yadav S; Gu Z; Meyers CJG; Wu L; Chen D; Pandya S; York RA; Martin LW; Spanier JE; Grinberg I Adv Mater; 2022 Feb; 34(7):e2106021. PubMed ID: 34695263 [TBL] [Abstract][Full Text] [Related]
19. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation. Rousseau G; Chaté H; Kapral R Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505 [TBL] [Abstract][Full Text] [Related]
20. Model of coarsening and vortex formation in vibrated granular rods. Aranson IS; Tsimring LS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021305. PubMed ID: 12636669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]