BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36731306)

  • 41. Enhancing NIR-II Upconversion Monochromatic Emission for Temperature Sensing.
    Liu X; Liu T; Tu L; Zuo J; Li J; Feng Y; Yao CJ
    Small; 2024 Jul; 20(27):e2308748. PubMed ID: 38282458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural and polyanionic heparin polysaccharide functionalized upconversion nanoparticles for highly sensitive and selective ratiometric detection of pesticide.
    Chen R; Wen H; Gao X; Zhao W; Aleem AR
    Int J Biol Macromol; 2024 Jun; ():133097. PubMed ID: 38942670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of Bi
    Lei P; Zhang P; Yao S; Song S; Dong L; Xu X; Liu X; Du K; Feng J; Zhang H
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27490-27497. PubMed ID: 27696854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic synthesis of gold nanoflowers as upconversion near-infrared nanoprobe energy acceptor and recognition unit for improved hydrogen sulfide sensing.
    Chen H; Tian P; Guo J; Sun M; Zhu W; Li Z; Liu Z
    Talanta; 2024 Jun; 273():125908. PubMed ID: 38503119
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A dye-quenched/sensitized switching upconversion nanoprobe for high-contrast mapping of the pH-related tumor microenvironment.
    He L; Li Y; Zeng Q; Li X; Liang H; Zhang T
    Nanoscale; 2023 Oct; 15(41):16727-16733. PubMed ID: 37811862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. β-Galactosidase-activated near-infrared AIEgen for ovarian cancer imaging in vivo.
    Xu L; Gao H; Deng Y; Liu X; Zhan W; Sun X; Xu JJ; Liang G
    Biosens Bioelectron; 2024 Jul; 255():116207. PubMed ID: 38554575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.
    Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase D in cell lysate and in living cells.
    Cen Y; Wu YM; Kong XJ; Wu S; Yu RQ; Chu X
    Anal Chem; 2014 Jul; 86(14):7119-27. PubMed ID: 24939283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Near-infrared to near-infrared upconverting NaYF4:Yb3+,Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(II) ions in solution.
    Chen HQ; Yuan F; Wang SZ; Xu J; Zhang YY; Wang L
    Analyst; 2013 Apr; 138(8):2392-7. PubMed ID: 23463191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upconversion luminescence-based aptasensor for the detection of thyroid-stimulating hormone in serum.
    Liu J; Yu C; Han L; Shen Y; Fang Y; Xia Y; Yao X; Wu F; Li C; Chen J; Zhang X; Lan J
    Mikrochim Acta; 2022 Apr; 189(5):179. PubMed ID: 35386003
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light.
    Peng T; Pu R; Wang B; Zhu Z; Liu K; Wang F; Wei W; Liu H; Zhan Q
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34068452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing.
    Gong L; Liu S; Song Y; Xie S; Guo Z; Xu J; Xu L
    J Mater Chem B; 2020 Jul; 8(27):5952-5961. PubMed ID: 32667025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells.
    Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y
    Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation.
    Zhan Q; Qian J; Liang H; Somesfalean G; Wang D; He S; Zhang Z; Andersson-Engels S
    ACS Nano; 2011 May; 5(5):3744-57. PubMed ID: 21513307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water.
    Li X; Wu Y; Liu Y; Zou X; Yao L; Li F; Feng W
    Nanoscale; 2014 Jan; 6(2):1020-8. PubMed ID: 24292453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NIR-II Responsive Upconversion Nanoprobe with Simultaneously Enhanced Single-Band Red Luminescence and Phase/Size Control for Bioimaging and Photodynamic Therapy.
    Bi S; Deng Z; Huang J; Wen X; Zeng S
    Adv Mater; 2023 Feb; 35(7):e2207038. PubMed ID: 36398498
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury.
    Liu Y; Chen M; Cao T; Sun Y; Li C; Liu Q; Yang T; Yao L; Feng W; Li F
    J Am Chem Soc; 2013 Jul; 135(26):9869-76. PubMed ID: 23763640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid upconversion nanoprobe for ratiometric detection of aliphatic biogenic amines in aqueous medium.
    Jaiswal S; Kundu S; Bandyopadhyay S; Patra A
    Nanoscale Adv; 2021 Jun; 3(11):3232-3239. PubMed ID: 36133671
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Selective and Sensitive Ratiometric Detection of Sn
    Kumar J; Roy I
    ACS Omega; 2022 Aug; 7(34):29840-29849. PubMed ID: 36061706
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Er
    Liu L; Wang S; Zhao B; Pei P; Fan Y; Li X; Zhang F
    Angew Chem Int Ed Engl; 2018 Jun; 57(25):7518-7522. PubMed ID: 29719100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.