These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. Hájek T; Jandera P; Staňková M; Česla P J Chromatogr A; 2016 May; 1446():91-102. PubMed ID: 27083260 [TBL] [Abstract][Full Text] [Related]
3. Pulsed elution modulation for on-line comprehensive two-dimensional liquid chromatography coupling reversed phase liquid chromatography and hydrophilic interaction chromatography. Chen Y; Wu Y; Liu X; Li B; Hu D; Huang S; Ma M; Chen B J Chromatogr A; 2019 Jan; 1583():98-107. PubMed ID: 30477714 [TBL] [Abstract][Full Text] [Related]
5. Optimization of comprehensive two-dimensional gradient chromatography coupling in-line hydrophilic interaction and reversed phase liquid chromatography. Jandera P; Hájek T; Staňková M; Vyňuchalová K; Česla P J Chromatogr A; 2012 Dec; 1268():91-101. PubMed ID: 23141711 [TBL] [Abstract][Full Text] [Related]
6. Online high-pH reversed-phase liquid chromatography × low-pH reversed-phase liquid chromatography tandem electrospray ionization mass spectrometry combined with pulse elution gradient in the first dimension for the analysis of alkaloids in Macleaya cordata (willd.) R. Br. Hu D; Li Y; Zhao H; Zhao Y; Huang S; Li J; Li Z; Duan Y; Chen Y; Xia J J Sep Sci; 2020 Apr; 43(8):1423-1430. PubMed ID: 32003152 [TBL] [Abstract][Full Text] [Related]
7. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis. Muller M; Tredoux AGJ; de Villiers A J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525 [TBL] [Abstract][Full Text] [Related]
8. Columns and optimum gradient conditions for fast second-dimension separations in comprehensive two-dimensional liquid chromatography. Hájek T; Jandera P J Sep Sci; 2012 Jul; 35(14):1712-22. PubMed ID: 22807355 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional liquid chromatography consisting of twelve second-dimension columns for comprehensive analysis of intact proteins. Ren J; Beckner MA; Lynch KB; Chen H; Zhu Z; Yang Y; Chen A; Qiao Z; Liu S; Lu JJ Talanta; 2018 May; 182():225-229. PubMed ID: 29501145 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. Venkatramani CJ; Al-Sayah M; Li G; Goel M; Girotti J; Zang L; Wigman L; Yehl P; Chetwyn N Talanta; 2016 Feb; 148():548-55. PubMed ID: 26653484 [TBL] [Abstract][Full Text] [Related]
11. Development of different comprehensive two dimensional systems for the separation of phenolic antioxidants. Cacciola F; Jandera P; Blahová E; Mondello L J Sep Sci; 2006 Nov; 29(16):2500-13. PubMed ID: 17154131 [TBL] [Abstract][Full Text] [Related]
12. A Strategy for assessing peak purity of pharmaceutical peptides in reversed-phase chromatography methods using two-dimensional liquid chromatography coupled to mass spectrometry. Part II: Development of second-dimension gradient conditions. Stoll DR; Sylvester M; Euerby MR; Buckenmaier SMC; Petersson P J Chromatogr A; 2023 Mar; 1693():463873. PubMed ID: 36871316 [TBL] [Abstract][Full Text] [Related]
13. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. Seidl C; Bell DS; Stoll DR J Chromatogr A; 2019 Oct; 1604():460484. PubMed ID: 31488293 [TBL] [Abstract][Full Text] [Related]
14. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns. Vyňuchalová K; Jandera P J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942 [TBL] [Abstract][Full Text] [Related]
15. Effects of the gradient profile, sample volume and solvent on the separation in very fast gradients, with special attention to the second-dimension gradient in comprehensive two-dimensional liquid chromatography. Jandera P; Hájek T; Cesla P J Chromatogr A; 2011 Apr; 1218(15):1995-2006. PubMed ID: 21081232 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Sensitivity in Comprehensive Liquid Chromatography: Overcoming the Dilution Problem in LC × LC via Temperature-Responsive Liquid Chromatography. Wicht K; Baert M; Schipperges S; von Doehren N; Desmet G; Van Geem KM; de Villiers A; Lynen F Anal Chem; 2022 Dec; 94(48):16728-16737. PubMed ID: 36440685 [TBL] [Abstract][Full Text] [Related]
17. Online Comprehensive High pH Reversed Phase × Low pH Reversed Phase Approach for Two-Dimensional Separations of Intact Proteins in Top-Down Proteomics. Baghdady YZ; Schug KA Anal Chem; 2019 Sep; 91(17):11085-11091. PubMed ID: 31366196 [TBL] [Abstract][Full Text] [Related]
18. Speeding up temperature-responsive × reversed-phase comprehensive liquid chromatography through the combined exploitation of temperature and flow rate gradients. Wicht K; Baert M; von Doehren N; Desmet G; de Villiers A; Lynen F J Chromatogr A; 2022 Dec; 1685():463584. PubMed ID: 36323099 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive two-dimensional normal-phase (adsorption)-reversed-phase liquid chromatography. Dugo P; Favoino O; Luppino R; Dugo G; Mondello L Anal Chem; 2004 May; 76(9):2525-30. PubMed ID: 15117193 [TBL] [Abstract][Full Text] [Related]