These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36731390)
1. Sub-keV corrections to binary encounter cross section models for electron ionization of liquid water with application to the Geant4-DNA Monte Carlo code. Margis S; Kyriakou I; Incerti S; Bordage MC; Emfietzoglou D Appl Radiat Isot; 2023 Apr; 194():110693. PubMed ID: 36731390 [TBL] [Abstract][Full Text] [Related]
2. Technical Note: Improvements in geant4 energy-loss model and the effect on low-energy electron transport in liquid water. Kyriakou I; Incerti S; Francis Z Med Phys; 2015 Jul; 42(7):3870-6. PubMed ID: 26133588 [TBL] [Abstract][Full Text] [Related]
3. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539 [TBL] [Abstract][Full Text] [Related]
4. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Kyriakou I; Ivanchenko V; Sakata D; Bordage MC; Guatelli S; Incerti S; Emfietzoglou D Phys Med; 2019 Feb; 58():149-154. PubMed ID: 30642767 [TBL] [Abstract][Full Text] [Related]
5. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Margis S; Magouni M; Kyriakou I; Georgakilas AG; Incerti S; Emfietzoglou D Phys Med Biol; 2020 Feb; 65(4):045007. PubMed ID: 31935692 [TBL] [Abstract][Full Text] [Related]
6. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
7. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Kyriakou I; Tremi I; Georgakilas AG; Emfietzoglou D Appl Radiat Isot; 2021 Jun; 172():109654. PubMed ID: 33676082 [TBL] [Abstract][Full Text] [Related]
8. Comparison of GEANT4 very low energy cross section models with experimental data in water. Incerti S; Ivanchenko A; Karamitros M; Mantero A; Moretto P; Tran HN; Mascialino B; Champion C; Ivanchenko VN; Bernal MA; Francis Z; Villagrasa C; Baldacchin G; Guèye P; Capra R; Nieminen P; Zacharatou C Med Phys; 2010 Sep; 37(9):4692-708. PubMed ID: 20964188 [TBL] [Abstract][Full Text] [Related]
9. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes. Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686 [TBL] [Abstract][Full Text] [Related]
10. Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code. Vassiliev ON Phys Med Biol; 2012 Feb; 57(4):1087-94. PubMed ID: 22297165 [TBL] [Abstract][Full Text] [Related]
11. A comparative study on Monte Carlo simulations of electron emission from liquid water. Mehnaz ; Yang LH; Zou YB; Da B; Mao SF; Li HM; Zhao YF; Ding ZJ Med Phys; 2020 Feb; 47(2):759-771. PubMed ID: 31702062 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo Electron Track Structure Calculations in Liquid Water Using a New Model Dielectric Response Function. Emfietzoglou D; Papamichael G; Nikjoo H Radiat Res; 2017 Sep; 188(3):355-368. PubMed ID: 28650774 [TBL] [Abstract][Full Text] [Related]
13. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description. Madsen JR; Akabani G Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979 [TBL] [Abstract][Full Text] [Related]
14. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. Emfietzoglou D; Karava K; Papamichael G; Moscovitch M Phys Med Biol; 2003 Aug; 48(15):2355-71. PubMed ID: 12953903 [TBL] [Abstract][Full Text] [Related]
16. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application. Derksen L; Pfuhl T; Engenhart-Cabillic R; Zink K; Baumann KS Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34384060 [No Abstract] [Full Text] [Related]
17. Development of a Monte Carlo track structure code for low-energy protons in water. Uehara S; Toburen LH; Nikjoo H Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921 [TBL] [Abstract][Full Text] [Related]
18. Binary-Encounter-Bethe ionisation cross sections for simulation of DNA damage by the direct effect of ionising radiation. Plante I; Cucinotta FA Radiat Prot Dosimetry; 2015 Sep; 166(1-4):19-23. PubMed ID: 25870431 [TBL] [Abstract][Full Text] [Related]
19. Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV. Cho SH; Vassiliev ON; Horton JL Radiat Environ Biophys; 2007 Mar; 46(1):77-83. PubMed ID: 17219152 [TBL] [Abstract][Full Text] [Related]
20. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface. Emfietzoglou D; Nikjoo H Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]