These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 36731391)
21. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination. Liu B; Xu J; Liu T; Ouyang X Br J Radiol; 2012 Oct; 85(1018):e925-32. PubMed ID: 22573293 [TBL] [Abstract][Full Text] [Related]
22. Monte Carlo study of Siemens PRIMUS photoneutron production. Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164 [TBL] [Abstract][Full Text] [Related]
23. Assessment of secondary neutrons in particle therapy by Monte Carlo simulations. Vedelago J; Geser FA; Muñoz ID; Stabilini A; Yukihara EG; Jäkel O Phys Med Biol; 2022 Jan; 67(1):. PubMed ID: 34905742 [No Abstract] [Full Text] [Related]
24. Beam port filters in a TRIGA MARK III nuclear reactor to produce epithermal neutrons for BNCT. Medina-Castro D; Vega-Carrillo HR; Galicia-Aragón J; Soto-Bernal TG; Baltazar-Raigosa A Appl Radiat Isot; 2022 Jan; 179():110018. PubMed ID: 34749092 [TBL] [Abstract][Full Text] [Related]
25. Monte Carlo based protocol for cell survival and tumour control probability in BNCT. Ye SJ Phys Med Biol; 1999 Feb; 44(2):447-61. PubMed ID: 10070794 [TBL] [Abstract][Full Text] [Related]
26. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309 [TBL] [Abstract][Full Text] [Related]
27. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells. Kinashi Y; Sakurai Y; Masunaga S; Suzuki M; Takagaki M; Akaboshi M; Ono K Radiat Res; 2000 Sep; 154(3):313-8. PubMed ID: 10956438 [TBL] [Abstract][Full Text] [Related]
28. CHARACTERIZATION OF THE EPITHERMAL NEUTRON FIELD PRODUCED BY p+7Li REACTION IN A TANDEM ACCELERATOR USING A BONNER SPHERE SPECTROMETER. Romero-Expósito M; Viñals S; Ortega-Gelabert O; Fernández B; Jiménez-Bonilla P; Praena J; Domingo C Radiat Prot Dosimetry; 2018 Aug; 180(1-4):80-84. PubMed ID: 29669138 [TBL] [Abstract][Full Text] [Related]
29. The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256 [TBL] [Abstract][Full Text] [Related]
30. Study of a Guzmán-García KA; Vega-Carrillo HR; Gallego E; Lorente-Fillol A; Méndez-Villafañe R; Gonzalez JA; Ibañez-Fernandez S Appl Radiat Isot; 2016 Nov; 117():58-64. PubMed ID: 26994753 [TBL] [Abstract][Full Text] [Related]
31. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits. Hervé M; Sauzet N; Santos D Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549 [TBL] [Abstract][Full Text] [Related]
32. ESTIMATION OF SCATTERED NEUTRONS CONTRIBUTION IN A NEUTRON CALIBRATION BUNKER USING A MONTE CARLO SIMULATION. Obeid MH; Ismail A; Bitar A; Shweikani R Radiat Prot Dosimetry; 2022 Feb; 198(1-2):37-43. PubMed ID: 35034129 [TBL] [Abstract][Full Text] [Related]
33. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy. Rivard MJ Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222 [TBL] [Abstract][Full Text] [Related]
34. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy. Takada K; Kumada H; Liem PH; Sakurai H; Sakae T Phys Med; 2016 Dec; 32(12):1846-1851. PubMed ID: 27889131 [TBL] [Abstract][Full Text] [Related]
35. Development of an irradiation method for superficial tumours using a hydrogel bolus in an accelerator-based BNCT. Sasaki A; Tanaka H; Takata T; Tamari Y; Watanabe T; Hu N; Kawabata S; Kudo Y; Mitsumoto T; Sakurai Y; Suzuki M Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34823226 [TBL] [Abstract][Full Text] [Related]
36. Design of an Am-Be neuron source experimental platform at Sichuan University. Chen X; Qin X; Liu J; Zhou R; Liang Y; Yang C Appl Radiat Isot; 2021 Jan; 167():109443. PubMed ID: 33059193 [TBL] [Abstract][Full Text] [Related]
37. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam? Ding GX; Duzenli C; Kalach NI Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of the epithermal neutron beam used for boron neutron capture therapy. Liu HB; Brugger RM; Greenberg DD; Rorer DC; Hu JP; Hauptman HM Int J Radiat Oncol Biol Phys; 1994 Mar; 28(5):1149-56. PubMed ID: 8175400 [TBL] [Abstract][Full Text] [Related]
39. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer. Maglieri R; Licea A; Evans M; Seuntjens J; Kildea J Med Phys; 2015 Nov; 42(11):6162-9. PubMed ID: 26520709 [TBL] [Abstract][Full Text] [Related]
40. Measurements of the thermal neutron flux for an accelerator-based photoneutron source. Taheri A; Pazirandeh A Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]