These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Shimizu K; Mijiddorj B; Usami M; Mizoguchi I; Yoshida S; Akayama S; Hamada Y; Ohyama A; Usui K; Kawamura I; Kawano R Nat Nanotechnol; 2022 Jan; 17(1):67-75. PubMed ID: 34811552 [TBL] [Abstract][Full Text] [Related]
3. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
4. Single polypeptide detection using a translocon EXP2 nanopore. Miyagi M; Takiguchi S; Hakamada K; Yohda M; Kawano R Proteomics; 2022 Mar; 22(5-6):e2100070. PubMed ID: 34411416 [TBL] [Abstract][Full Text] [Related]
5. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH. Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739 [TBL] [Abstract][Full Text] [Related]
6. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores. Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022 [TBL] [Abstract][Full Text] [Related]
7. Peptide nanopores and lipid bilayers: interactions by coarse-grained molecular-dynamics simulations. Klingelhoefer JW; Carpenter T; Sansom MS Biophys J; 2009 May; 96(9):3519-28. PubMed ID: 19413958 [TBL] [Abstract][Full Text] [Related]
8. Nanopore Detection Using Supercharged Polypeptide Molecular Carriers. Wang X; Thomas TM; Ren R; Zhou Y; Zhang P; Li J; Cai S; Liu K; Ivanov AP; Herrmann A; Edel JB J Am Chem Soc; 2023 Mar; 145(11):6371-6382. PubMed ID: 36897933 [TBL] [Abstract][Full Text] [Related]
9. DNA Origami in the Quest for Membrane Piercing. Niranjan Dhanasekar N; Thiyagarajan D; Bhatia D Chem Asian J; 2022 Oct; 17(19):e202200591. PubMed ID: 35947734 [TBL] [Abstract][Full Text] [Related]
10. Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products. Tan X; Lv C; Chen H Crit Rev Food Sci Nutr; 2023; 63(31):10866-10879. PubMed ID: 35687354 [TBL] [Abstract][Full Text] [Related]
12. Size-tunable transmembrane nanopores assembled from decomposable molecular templates. Su Z; Chen T; Liu X; Kang X Biosens Bioelectron; 2025 Jan; 267():116780. PubMed ID: 39277918 [TBL] [Abstract][Full Text] [Related]
13. Detection of structured single-strand DNA via solid-state nanopore. Liu SC; Li Q; Ying YL; Long YT Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583 [TBL] [Abstract][Full Text] [Related]
14. DNA scaffolds support stable and uniform peptide nanopores. Spruijt E; Tusk SE; Bayley H Nat Nanotechnol; 2018 Aug; 13(8):739-745. PubMed ID: 29808001 [TBL] [Abstract][Full Text] [Related]
15. The Utility of Nanopore Technology for Protein and Peptide Sensing. Robertson JWF; Reiner JE Proteomics; 2018 Sep; 18(18):e1800026. PubMed ID: 29952121 [TBL] [Abstract][Full Text] [Related]
19. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier. Trick JL; Song C; Wallace EJ; Sansom MS ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923 [TBL] [Abstract][Full Text] [Related]
20. The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition. Lucas FLR; Sarthak K; Lenting EM; Coltan D; van der Heide NJ; Versloot RCA; Aksimentiev A; Maglia G ACS Nano; 2021 Jun; 15(6):9600-9613. PubMed ID: 34060809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]