These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36732225)

  • 1. Crucial 3-D viscous hydrodynamic contributions to the theoretical modeling of the cochlear response.
    Sisto R; Belardinelli D; Altoè A; Shera CA; Moleti A
    J Acoust Soc Am; 2023 Jan; 153(1):77. PubMed ID: 36732225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid Focusing Contributes to the BM Vibration Amplification by Boosting the Pressure.
    Sisto R; Belardinelli D; Altoè A; Shera CA; Moleti A
    AIP Conf Proc; 2024 Feb; 3062(1):. PubMed ID: 38516506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid focusing and viscosity allow high gain and stability of the cochlear response.
    Sisto R; Belardinelli D; Moleti A
    J Acoust Soc Am; 2021 Dec; 150(6):4283. PubMed ID: 34972263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of WKB and finite difference calculations for a two-dimensional cochlear model.
    Steele CR; Taber LA
    J Acoust Soc Am; 1979 Apr; 65(4):1001-6. PubMed ID: 447913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear perfusion with a viscous fluid.
    Wang Y; Olson ES
    Hear Res; 2016 Jul; 337():1-11. PubMed ID: 27220484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unification and extension of monolithic state space and iterative cochlear models.
    Rapson MJ; Tapson JC; Karpul D
    J Acoust Soc Am; 2012 May; 131(5):3935-52. PubMed ID: 22559368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tonotopic cochlea puzzle: A resonant transmission line with a "non-resonant" response peak.
    Sisto R; Moleti A
    JASA Express Lett; 2024 Jul; 4(7):. PubMed ID: 39028922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of perilymph viscosity on low-frequency intracochlear pressures and the cochlear input impedance of the cat.
    Koshigoe S; Kwok WK; Tubis A
    J Acoust Soc Am; 1983 Aug; 74(2):486-92. PubMed ID: 6619426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved WKB calculation for a two-dimensional cochlear model.
    Steele CR; Miller CE
    J Acoust Soc Am; 1980 Jul; 68(1):147-8. PubMed ID: 7391356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possibility of sharp tuning in a linear transversally inhomogeneous cochlear model.
    Novoselova SM
    Hear Res; 1989 Sep; 41(2-3):125-35. PubMed ID: 2808145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymptotic analysis of a viscous cochlear model.
    Keller JB; Neu JC
    J Acoust Soc Am; 1985 Jun; 77(6):2107-10. PubMed ID: 4019897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-dimensional cochlear fluid model based on conformal mapping.
    Lüling H; Franosch JM; van Hemmen JL
    J Acoust Soc Am; 2010 Dec; 128(6):3577-84. PubMed ID: 21218890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing methods of modeling near field fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2015 Mar; 137(3):1309-17. PubMed ID: 25786944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional model calculations for guinea pig cochlea.
    Steele CR; Taber LA
    J Acoust Soc Am; 1981 Apr; 69(4):1107-11. PubMed ID: 7229198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microengineered hydromechanical cochlear model.
    White RD; Grosh K
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1296-301. PubMed ID: 15665089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric study of cochlear input impedance.
    Puria S; Allen JB
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):053011. PubMed ID: 26651783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the "Reticular Lamina Nonlinearity" Contribute to the Basal DPOAE Source?
    Moleti A; Sisto R
    J Assoc Res Otolaryngol; 2020 Dec; 21(6):463-473. PubMed ID: 32959194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.