BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36732249)

  • 1. Experiments and simulations demonstrating the rapid ultrasonic rewarming of frozen tissue cryovials.
    Xu R; Treeby BE; Martin E
    J Acoust Soc Am; 2023 Jan; 153(1):517. PubMed ID: 36732249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NUMERICAL SIMULATION ON MICROWAVE REWARMING OF CRYOPRESERVED RABBIT KIDNEY WITH EMBEDDED SUPERPARAMAGNETIC NANOPARTICLES.
    Wang T; Zhao G
    Cryo Letters; 2015; 36(3):213-20. PubMed ID: 26510340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Mode Electromagnetic Resonance Rewarming for the Cryopreservation of Samples with Large Volumes: A Numerical and Experimental Study.
    Ren S; Shu Z; Pan J; Wang Z; Ma R; Peng J; Chen M; Gao D
    Biopreserv Biobank; 2022 Aug; 20(4):317-322. PubMed ID: 35984939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-Water Bath Hybrid Warming for Frozen Cryoprotectant Solution Using a Helical Antenna.
    Ruan H; Wang T; Gao C
    Cryo Letters; 2020; 41(1):26-30. PubMed ID: 33973981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues.
    Wang T; Zhao G; Liang XM; Xu Y; Li Y; Tang H; Jiang R; Gao D
    Cryobiology; 2014 Apr; 68(2):234-43. PubMed ID: 24530372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of High-Intensity Focused Ultrasound for the Rewarming of Cryopreserved Biological Material.
    Olmo A; Barroso P; Barroso F; Risco R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):599-607. PubMed ID: 32804648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification.
    Wang J; Zhao G; Zhang Z; Xu X; He X
    Acta Biomater; 2016 Mar; 33():264-74. PubMed ID: 26802443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Rapid Rewarming Chips for Cryopreservation by Joule Heating.
    Han H; Zhan T; Cui M; Guo N; Dang H; Yang G; Shu S; He W; Xu Y
    Langmuir; 2023 Aug; 39(31):11048-11062. PubMed ID: 37497679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transurethral ultrasound applicators with directional heating patterns for prostate thermal therapy: in vivo evaluation using magnetic resonance thermometry.
    Diederich CJ; Stafford RJ; Nau WH; Burdette EC; Price RE; Hazle JD
    Med Phys; 2004 Feb; 31(2):405-13. PubMed ID: 15000627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Dielectric Properties of Cryoprotective Agent Solutions with a Resonant Cavity for the Electromagnetic Rewarming in Cryopreservation.
    Pan J; Shu Z; Ren S; Gao D
    Biopreserv Biobank; 2017 Oct; 15(5):404-409. PubMed ID: 28783479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions: correlation of freezing visualization with functional recovery.
    Baicu S; Taylor MJ; Chen Z; Rabin Y
    Cryobiology; 2008 Aug; 57(1):1-8. PubMed ID: 18490009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic and Thermal Characterization of Therapeutic Ultrasonic Langevin Transducers under Continuous- and Pulsed Wave Excitations.
    Kim J; Lee J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy.
    Tyréus PD; Diederich CJ
    Phys Med Biol; 2002 Apr; 47(7):1073-89. PubMed ID: 11996056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuous hybrid microwave heating process for producing rapid and uniform rewarming of cryopreserved tissues.
    Zhang Q; Jackson TH; Ungan A
    Ann N Y Acad Sci; 1998 Sep; 858():253-61. PubMed ID: 9988669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: in vivo evaluation under MR guidance.
    Kinsey AM; Diederich CJ; Rieke V; Nau WH; Pauly KB; Bouley D; Sommer G
    Med Phys; 2008 May; 35(5):2081-93. PubMed ID: 18561684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a single mode electromagnetic resonant cavity for rewarming of cryopreserved biomaterials.
    Luo D; Yu C; He L; Lu C; Gao D
    Cryobiology; 2006 Oct; 53(2):288-93. PubMed ID: 16930581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.