These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36732253)

  • 1. Tunable composite lattice structure for low-frequency and ultra-broadband underwater sound absorption.
    Liu B; Huang S; Zheng B; Chen X; Zhao J; Qi X; Li Y; Liu S
    J Acoust Soc Am; 2023 Jan; 153(1):415. PubMed ID: 36732253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin acoustic metamaterial as super absorber for broadband low-frequency underwater sound.
    Zhou X; Wang X; Xin F
    Sci Rep; 2023 May; 13(1):7983. PubMed ID: 37198226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical requirements and inverse design for broadband perfect absorption of low-frequency waterborne sound by ultrathin metasurface.
    Zhong J; Zhao H; Yang H; Wang Y; Yin J; Wen J
    Sci Rep; 2019 Feb; 9(1):1181. PubMed ID: 30718565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands.
    Zhang Y; Pan J; Chen K; Zhong J
    J Acoust Soc Am; 2018 Aug; 144(2):648. PubMed ID: 30180693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Space-Shift Phase-Coherent Cancellation Metasurface for Broadband Sound Absorption.
    Ma F; Zhang H; Wang X; Liu C; Wu JH
    Small Methods; 2023 Nov; 7(11):e2300569. PubMed ID: 37661592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-sparse metamaterials absorber for broadband low-frequency sound with free ventilation.
    Shao C; Xiong W; Long H; Tao J; Cheng Y; Liu X
    J Acoust Soc Am; 2021 Aug; 150(2):1044. PubMed ID: 34470305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extra-broadband compact sound-absorbing structure composing of double-layer resonator with multiple perforations.
    Guo J; Fang Y; Qu R; Liu Q; Zhang X
    J Acoust Soc Am; 2021 Aug; 150(2):1370. PubMed ID: 34470319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and optimization of three-dimensional composite multilayer cylindrical pentamode metamaterials for controlling low frequency acoustic waves.
    Cai C; Wang X; Wang Q; Li M; He G; Wang Z; Qin Y
    Sci Rep; 2022 Apr; 12(1):5594. PubMed ID: 35379842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials.
    Wen J; Zhao H; Lv L; Yuan B; Wang G; Wen X
    J Acoust Soc Am; 2011 Sep; 130(3):1201-8. PubMed ID: 21895062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subwavelength broadband sound absorber based on a composite metasurface.
    Long H; Liu C; Shao C; Cheng Y; Chen K; Qiu X; Liu X
    Sci Rep; 2020 Aug; 10(1):13823. PubMed ID: 32796874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband Waterborne Multiphase Pentamode Metastructure with Simultaneous Wavefront Manipulation and Energy Absorption Capabilities.
    An Y; Zou H; Zhao A
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Underwater Absorption and Reflection Characteristics by Using a Double-Layer Composite Metamaterial.
    Zhu Y; Zhao X; Mei Z; Li H; Wu D
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel smart hybrid multimorph piezoelectric spherical shell cloak for broadband near-perfect underwater acoustic camouflage applications.
    Hasheminejad SM; Kasaeisani A
    Sci Rep; 2024 Jun; 14(1):13128. PubMed ID: 38849400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable underwater sound absorption characteristics of 0-3 piezoelectric anechoic coating.
    Jia X; Jin G; Wang X; Ye T; Chen Y
    J Acoust Soc Am; 2024 Jan; 155(1):156-170. PubMed ID: 38180152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable network sound absorber based on additive manufacturing.
    Zhao T; Chen Y; Zhang K; Hu G
    J Acoust Soc Am; 2021 Jul; 150(1):94. PubMed ID: 34340480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks.
    Li R; Jiang Y; Zhu R; Zou Y; Shen L; Zheng B
    Sci Rep; 2022 Jul; 12(1):12037. PubMed ID: 35835947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact broadband acoustic sink with coherently coupled weak resonances.
    Huang S; Zhou Z; Li D; Liu T; Wang X; Zhu J; Li Y
    Sci Bull (Beijing); 2020 Mar; 65(5):373-379. PubMed ID: 36659228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater metamaterial absorber with impedance-matched composite.
    Qu S; Gao N; Tinel A; Morvan B; Romero-García V; Groby JP; Sheng P
    Sci Adv; 2022 May; 8(20):eabm4206. PubMed ID: 35584217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption.
    Matlack KH; Bauhofer A; Krödel S; Palermo A; Daraio C
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8386-90. PubMed ID: 27410042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.