These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36732322)

  • 1. Parceling Ordinal Items in Latent Interaction Modeling.
    Liu L; Zhang Q
    Multivariate Behav Res; 2023; 58(1):143-144. PubMed ID: 36732322
    [No Abstract]   [Full Text] [Related]  

  • 2. Impact of homogeneous and heterogeneous parceling strategies when latent variables represent multidimensional constructs.
    Cole DA; Perkins CE; Zelkowitz RL
    Psychol Methods; 2016 Jun; 21(2):164-74. PubMed ID: 26323000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales.
    Yang C; Nay S; Hoyle RH
    Appl Psychol Meas; 2010 Mar; 34(2):122-142. PubMed ID: 20514149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Problems with Rationales for Parceling that Fail to Consider Parcel-Allocation Variability.
    Sterba SK
    Multivariate Behav Res; 2019; 54(2):264-287. PubMed ID: 30755036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parceling Cannot Reduce Factor Indeterminacy in Factor Analysis: A Research Note.
    Rigdon EE; Becker JM; Sarstedt M
    Psychometrika; 2019 Sep; 84(3):772-780. PubMed ID: 31292860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Latent Variable Interactions With Ordered-Categorical Indicators: Comparisons of Unconstrained Product Indicator and Latent Moderated Structural Equations Approaches.
    Aytürk E; Cham H; Jennings PA; Brown JL
    Educ Psychol Meas; 2020 Apr; 80(2):262-292. PubMed ID: 32158022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators.
    Guenole N
    Front Psychol; 2016; 7():289. PubMed ID: 26973580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population performance of SEM parceling strategies under measurement and structural model misspecification.
    Rhemtulla M
    Psychol Methods; 2016 Sep; 21(3):348-368. PubMed ID: 26828780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squeezing interval change from ordinal panel data: latent growth curves with ordinal outcomes.
    Mehta PD; Neale MC; Flay BR
    Psychol Methods; 2004 Sep; 9(3):301-33. PubMed ID: 15355151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses.
    Vasdekis VG; Cagnone S; Moustaki I
    Psychometrika; 2012 Jul; 77(3):425-41. PubMed ID: 27519774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordinal latent variable models and their application in the study of newly licensed teenage drivers.
    Jackson JC; Albert PS; Zhang Z; Morton BS
    J R Stat Soc Ser C Appl Stat; 2013 May; 62(3):435-450. PubMed ID: 25284899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Asymmetry in the Time-Distance Relation of Ordinal Personality Items.
    Molenaar D; Rózsa S; Kõ N
    Appl Psychol Meas; 2021 May; 45(3):178-194. PubMed ID: 33953452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating methods for handling missing ordinal data in structural equation modeling.
    Jia F; Wu W
    Behav Res Methods; 2019 Oct; 51(5):2337-2355. PubMed ID: 30684226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of parceling on model selection: Parcel-allocation variability in model ranking.
    Sterba SK; Rights JD
    Psychol Methods; 2017 Mar; 22(1):47-68. PubMed ID: 27045852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sensitivity of structural equation modeling with ordinal data to underlying non-normality and observed distributional forms.
    Foldnes N; Grønneberg S
    Psychol Methods; 2022 Aug; 27(4):541-567. PubMed ID: 33793270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordinal Outcome State-Space Models for Intensive Longitudinal Data.
    Henry TR; Slipetz LR; Falk A; Qiu J; Chen M
    Psychometrika; 2024 Jun; ():. PubMed ID: 38861220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ordinal Unsupervised Domain Adaptation With Recursively Conditional Gaussian Imposed Variational Disentanglement.
    Liu X; Li S; Ge Y; Ye P; You J; Lu J
    IEEE Trans Pattern Anal Mach Intell; 2022 Jun; PP():. PubMed ID: 35704544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Interactions Between Latent Variables in Research on Type D Personality: A Monte Carlo Simulation and Clinical Study of Depression and Anxiety.
    Lodder P; Denollet J; Emons WHM; Nefs G; Pouwer F; Speight J; Wicherts JM
    Multivariate Behav Res; 2019; 54(5):637-665. PubMed ID: 30977400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ordinal distance effect in working memory: does it exist in the absence of confounds?
    Dewulf M; Gevers W; Antoine S
    Psychol Res; 2024 Apr; 88(3):852-860. PubMed ID: 37874371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A penalized latent class model for ordinal data.
    Desantis SM; Houseman EA; Coull BA; Stemmer-Rachamimov A; Betensky RA
    Biostatistics; 2008 Apr; 9(2):249-62. PubMed ID: 17626225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.