BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36732454)

  • 1. Extreme precipitation indices over India using CMIP6: a special emphasis on the SSP585 scenario.
    Reddy NM; Saravanan S
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47119-47143. PubMed ID: 36732454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe.
    Eini MR; Rahmati A; Salmani H; Brocca L; Piniewski M
    Sci Total Environ; 2022 Dec; 852():158497. PubMed ID: 36063945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future Projection of Extreme Precipitation Indices over the Qilian Mountains under Global Warming.
    Li Y; Qin X; Jin Z; Liu Y
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal assessment of extreme climate events in Kinnaur district, Himachal Pradesh, north-western Himalaya, India.
    Kanwar N; Kuniyal JC; Rautela KS; Singh L; Pandey DC
    Environ Monit Assess; 2024 May; 196(6):557. PubMed ID: 38764082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of improved horizontal resolutions in the simulations of mean and extreme precipitation using CMIP6 HighResMIP models over West Africa.
    Ajibola FO; Afolayan SA
    Environ Monit Assess; 2024 Mar; 196(3):328. PubMed ID: 38424296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data.
    Niu Z; Feng L; Chen X; Yi X
    Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34205168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected climate extremes over agro-climatic zones of Ganga River Basin under 1.5, 2, and 3° global warming levels.
    Singh HV; Joshi N; Suryavanshi S
    Environ Monit Assess; 2023 Aug; 195(9):1062. PubMed ID: 37592096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of CMIP6 model performance and extreme precipitation prediction in the Awash basin.
    Sime CH; Dibaba WT
    Heliyon; 2023 Nov; 9(11):e21578. PubMed ID: 38027629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand.
    Arunrat N; Sereenonchai S; Chaowiwat W; Wang C
    Sci Total Environ; 2022 Feb; 807(Pt 2):150741. PubMed ID: 34627910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial-temporal variation of extreme precipitation in the Yellow-Huai-Hai-Yangtze Basin of China.
    Wang L; Wang J; He F; Wang Q; Zhao Y; Lu P; Huang Y; Cui H; Deng H; Jia X
    Sci Rep; 2023 Jun; 13(1):9312. PubMed ID: 37291240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trend analysis of extreme rainfall indices from CHIRPS precipitation estimates over the Lake Tana sub-basin, Abbay Basin of Ethiopia.
    Mohammed JA
    Environ Monit Assess; 2024 May; 196(6):575. PubMed ID: 38789867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Future projection of climate extremes across contiguous northeast India and Bangladesh.
    Paul AR; Maity R
    Sci Rep; 2023 Sep; 13(1):15616. PubMed ID: 37730816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Model Ensemble Projections of Winter Extreme Temperature Events on the Chinese Mainland.
    Yi X; Zou L; Niu Z; Jiang D; Cao Q
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.
    Reddy NM; Saravanan S; Paneerselvam B
    Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-criteria decision analysis approach for ranking the performance of CMIP6 models in reproducing precipitation patterns over Abaya-Chamo sub-basin, Ethiopia.
    Ersado DL; Awoke AG
    Heliyon; 2024 Jun; 10(12):e32442. PubMed ID: 38975131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future transition in climate extremes over Western Ghats of India based on CMIP6 models.
    Shetty S; Umesh P; Shetty A
    Environ Monit Assess; 2023 Apr; 195(5):578. PubMed ID: 37062766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of climate change on climate extreme indices in Kaduna River basin, Nigeria.
    Isa Z; Sawa BA; Abdussalam AF; Ibrahim M; Babati AH; Baba BM; Ugya AY
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77689-77712. PubMed ID: 37261694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Future precipitation and near surface air-temperature projection using CMIP6 models based on TOPSIS method: case study, Sistan-and-Baluchestan Province of Iran.
    Pegahfar N
    Environ Monit Assess; 2023 Nov; 195(12):1548. PubMed ID: 38019299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and projection of precipitation extremes under 1.5°C and 2.0°C GWLs over China using bias-corrected CMIP6 models.
    Guo J; Shen Y; Wang X; Liang X; Liu Z; Liu L
    iScience; 2023 Apr; 26(4):106179. PubMed ID: 37013188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing spatiotemporal trends of total and extreme precipitation in a subtropical highland region: A climate perspective.
    Ghanim AAJ; Anjum MN; Rasool G; Saifullah ; Irfan M; Rahman S; Mursal SNF; Niazi UM
    PLoS One; 2023; 18(8):e0289570. PubMed ID: 37540654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.