BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36732488)

  • 21. Coordinations of locomotor and respiratory rhythms in vitro are critically dependent on hindlimb sensory inputs.
    Morin D; Viala D
    J Neurosci; 2002 Jun; 22(11):4756-65. PubMed ID: 12040083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Afferent inputs modulate the activity of a rhythmic burst generator in the rat disinhibited spinal cord in vitro.
    Bracci E; Beato M; Nistri A
    J Neurophysiol; 1997 Jun; 77(6):3157-67. PubMed ID: 9212265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.
    Formenti A; Zocchi L
    Behav Brain Res; 2014 Oct; 272():8-15. PubMed ID: 24978097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation.
    Giraudin A; Cabirol-Pol MJ; Simmers J; Morin D
    J Neurophysiol; 2008 May; 99(5):2626-40. PubMed ID: 18337363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotonergic modulation of sacral dorsal root stimulation-induced locomotor output in newborn rat.
    Oueghlani Z; Juvin L; Lambert FM; Cardoit L; Courtand G; Masmejean F; Cazalets JR; Barrière G
    Neuropharmacology; 2020 Jun; 170():107815. PubMed ID: 31634501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive limb training modulates respiratory rhythmic bursts.
    Apicella R; Taccola G
    Sci Rep; 2023 May; 13(1):7226. PubMed ID: 37142670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury.
    Kondratskaya E; Ievglevskyi O; Züchner M; Samara A; Glover JC; Boulland JL
    Brain Res; 2019 Apr; 1708():10-19. PubMed ID: 30521786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remote control of respiratory neural network by spinal locomotor generators.
    Le Gal JP; Juvin L; Cardoit L; Thoby-Brisson M; Morin D
    PLoS One; 2014; 9(2):e89670. PubMed ID: 24586951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat.
    Vinay L; Clarac F
    Neuroscience; 1999 Apr; 90(1):165-76. PubMed ID: 10188943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse.
    Whelan P; Bonnot A; O'Donovan MJ
    J Neurophysiol; 2000 Dec; 84(6):2821-33. PubMed ID: 11110812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical Stimulation Able to Trigger Locomotor Spinal Circuits Also Induces Dorsal Horn Activity.
    Dingu N; Deumens R; Taccola G
    Neuromodulation; 2016 Jan; 19(1):38-46. PubMed ID: 26449748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cervicolumbar coordination in mammalian quadrupedal locomotion: role of spinal thoracic circuitry and limb sensory inputs.
    Juvin L; Le Gal JP; Simmers J; Morin D
    J Neurosci; 2012 Jan; 32(3):953-65. PubMed ID: 22262893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Respiration in vitro: II. Electrical stimulation.
    Hamada O; Garcia-Rill E; Skinner RD
    Somatosens Mot Res; 1992; 9(4):327-37. PubMed ID: 1492530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of isoflurane anesthesia on motor evoked potentials elicited by transcortical, brainstem, and spinal root stimulation.
    Haghighi SS
    Neurol Res; 1998 Sep; 20(6):555-8. PubMed ID: 9713848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coapplication of noisy patterned electrical stimuli and NMDA plus serotonin facilitates fictive locomotion in the rat spinal cord.
    Dose F; Taccola G
    J Neurophysiol; 2012 Dec; 108(11):2977-90. PubMed ID: 22956799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent plasticity of descending synaptic inputs to spinal motoneurons in an in vitro turtle brainstem-spinal cord preparation.
    Johnson SM; Mitchell GS
    J Neurosci; 2000 May; 20(9):3487-95. PubMed ID: 10777811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticonvulsant A(1) receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats.
    Brockhaus J; Ballanyi K
    Neuroscience; 2000; 96(2):359-71. PubMed ID: 10683576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.