BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36732509)

  • 21. Predators drive community reorganization during experimental range shifts.
    Jones NT; Symons CC; Cavalheri H; Pedroza-Ramos A; Shurin JB
    J Anim Ecol; 2020 Oct; 89(10):2378-2388. PubMed ID: 32592594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short-term fish predation destroys resilience of zooplankton communities and prevents recovery of phytoplankton control by zooplankton grazing.
    Ersoy Z; Brucet S; Bartrons M; Mehner T
    PLoS One; 2019; 14(2):e0212351. PubMed ID: 30768619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From mice to elephants: overturning the 'one size fits all' paradigm in marine plankton food chains.
    Boyce DG; Frank KT; Leggett WC
    Ecol Lett; 2015 Jun; 18(6):504-15. PubMed ID: 25919397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mixoplankton Database (MDB): Diversity of photo-phago-trophic plankton in form, function, and distribution across the global ocean.
    Mitra A; Caron DA; Faure E; Flynn KJ; Leles SG; Hansen PJ; McManus GB; Not F; do Rosario Gomes H; Santoferrara LF; Stoecker DK; Tillmann U
    J Eukaryot Microbiol; 2023; 70(4):e12972. PubMed ID: 36847544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm Experiment.
    Moustaka-Gouni M; Kormas KA; Scotti M; Vardaka E; Sommer U
    Protist; 2016 Aug; 167(4):389-410. PubMed ID: 27472657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ocean deoxygenation and zooplankton: Very small oxygen differences matter.
    Wishner KF; Seibel BA; Roman C; Deutsch C; Outram D; Shaw CT; Birk MA; Mislan KAS; Adams TJ; Moore D; Riley S
    Sci Adv; 2018 Dec; 4(12):eaau5180. PubMed ID: 30585291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zooplankton and the Ocean Carbon Cycle.
    Steinberg DK; Landry MR
    Ann Rev Mar Sci; 2017 Jan; 9():413-444. PubMed ID: 27814033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomagnification of Methylmercury in a Marine Plankton Ecosystem.
    Wu P; Zakem EJ; Dutkiewicz S; Zhang Y
    Environ Sci Technol; 2020 May; 54(9):5446-5455. PubMed ID: 32054263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions?
    de Senerpont Domis LN; Mooij WM; Hülsmann S; van Nes EH; Scheffer M
    Oecologia; 2007 Jan; 150(4):682-98. PubMed ID: 17024385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relative importance of salinization in lowland stream zooplankton: Implications of the ecosystem nutrient status.
    Gutierrez MF; Andrade VS; Flores-Mendez DN; Frau D; Licursi M; Negro L
    Sci Total Environ; 2024 Feb; 912():169240. PubMed ID: 38072253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton.
    Kamenos NA
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22442-7. PubMed ID: 21148422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs.
    Hébert MP; Beisner BE; Rautio M; Fussmann GF
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoplankton cell size: intra- and interspecific effects of warming and grazing.
    Peter KH; Sommer U
    PLoS One; 2012; 7(11):e49632. PubMed ID: 23226215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mismatch between marine plankton range movements and the velocity of climate change.
    Chivers WJ; Walne AW; Hays GC
    Nat Commun; 2017 Feb; 8():14434. PubMed ID: 28186097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean.
    Dutkiewicz S; Boyd PW; Riebesell U
    Glob Chang Biol; 2021 Mar; 27(6):1196-1213. PubMed ID: 33342048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter.
    Kohlbach D; Graeve M; Lange BA; David C; Schaafsma FL; van Franeker JA; Vortkamp M; Brandt A; Flores H
    Glob Chang Biol; 2018 Oct; 24(10):4667-4681. PubMed ID: 29999582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytoplankton-chytrid-zooplankton dynamics via a reaction-diffusion-advection mycoloop model.
    Zhang J; Han X; Wang H
    J Math Biol; 2024 Jun; 89(2):15. PubMed ID: 38884837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.