BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36732807)

  • 1. Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction.
    Li C; Warren RL; Birol I
    BMC Res Notes; 2023 Feb; 16(1):11. PubMed ID: 36732807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens.
    Li C; Sutherland D; Hammond SA; Yang C; Taho F; Bergman L; Houston S; Warren RL; Wong T; Hoang LMN; Cameron CE; Helbing CC; Birol I
    BMC Genomics; 2022 Jan; 23(1):77. PubMed ID: 35078402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial peptides from Rana [Lithobates] catesbeiana: Gene structure and bioinformatic identification of novel forms from tadpoles.
    Helbing CC; Hammond SA; Jackman SH; Houston S; Warren RL; Cameron CE; Birol I
    Sci Rep; 2019 Feb; 9(1):1529. PubMed ID: 30728430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning.
    Cordoves-Delgado G; García-Jacas CR
    J Chem Inf Model; 2024 May; 64(10):4310-4321. PubMed ID: 38739853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of antimicrobial peptides from the human gut microbiome using deep learning.
    Ma Y; Guo Z; Xia B; Zhang Y; Liu X; Yu Y; Tang N; Tong X; Wang M; Ye X; Feng J; Chen Y; Wang J
    Nat Biotechnol; 2022 Jun; 40(6):921-931. PubMed ID: 35241840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction.
    Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV
    Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities.
    Pang Y; Yao L; Xu J; Wang Z; Lee TY
    Bioinformatics; 2022 Dec; 38(24):5368-5374. PubMed ID: 36326438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data.
    Sidorczuk K; Gagat P; Pietluch F; Kała J; Rafacz D; Bąkała L; Słowik J; Kolenda R; Rödiger S; Fingerhut LCHW; Cooke IR; Mackiewicz P; Burdukiewicz M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets.
    Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM
    Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against
    Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI
    mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diff-AMP: tailored designed antimicrobial peptide framework with all-in-one generation, identification, prediction and optimization.
    Wang R; Wang T; Zhuo L; Wei J; Fu X; Zou Q; Yao X
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38446739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.
    Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R
    Interdiscip Sci; 2024 Feb; ():. PubMed ID: 38416364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iAMP-Attenpred: a novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model.
    Xing W; Zhang J; Li C; Huo Y; Dong G
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38055840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.