These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36732864)

  • 21. RNA-binding protein SAMD4A inhibits breast tumor angiogenesis by modulating the balance of angiogenesis program.
    Zhou M; Wang B; Li H; Han J; Li A; Lu W
    Cancer Sci; 2021 Sep; 112(9):3835-3845. PubMed ID: 34219323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translational repression of the
    Götze M; Dufourt J; Ihling C; Rammelt C; Pierson S; Sambrani N; Temme C; Sinz A; Simonelig M; Wahle E
    RNA; 2017 Oct; 23(10):1552-1568. PubMed ID: 28701521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation.
    Pinder BD; Smibert CA
    Fly (Austin); 2013; 7(3):142-5. PubMed ID: 23519205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels.
    Jeske M; Moritz B; Anders A; Wahle E
    EMBO J; 2011 Jan; 30(1):90-103. PubMed ID: 21081899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BUHO: a MATLAB script for the study of stress granules and processing bodies by high-throughput image analysis.
    Perez-Pepe M; Slomiansky V; Loschi M; Luchelli L; Neme M; Thomas MG; Boccaccio GL
    PLoS One; 2012; 7(12):e51495. PubMed ID: 23284702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mRNA decay proteins are targeted to poly(A)+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.
    López-Rosas I; Orozco E; Marchat LA; García-Rivera G; Guillen N; Weber C; Carrillo-Tapia E; Hernández de la Cruz O; Pérez-Plasencia C; López-Camarillo C
    PLoS One; 2012; 7(9):e45966. PubMed ID: 23029343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA recognition via the SAM domain of Smaug.
    Green JB; Gardner CD; Wharton RP; Aggarwal AK
    Mol Cell; 2003 Jun; 11(6):1537-48. PubMed ID: 12820967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA.
    Oberstrass FC; Lee A; Stefl R; Janis M; Chanfreau G; Allain FH
    Nat Struct Mol Biol; 2006 Feb; 13(2):160-7. PubMed ID: 16429156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic control of mRNA translation by reversible assembly of XRN1 bodies.
    Luchelli L; Thomas MG; Boccaccio GL
    J Cell Sci; 2015 Apr; 128(8):1542-54. PubMed ID: 25736288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.
    Semotok JL; Cooperstock RL; Pinder BD; Vari HK; Lipshitz HD; Smibert CA
    Curr Biol; 2005 Feb; 15(4):284-94. PubMed ID: 15723788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity.
    Luo N; Li G; Li Y; Fan X; Wang Y; Ye X; Mo X; Zhou J; Yuan W; Tan M; Xie H; Ocorr K; Bodmer R; Deng Y; Wu X
    BMB Rep; 2010 May; 43(5):355-61. PubMed ID: 20510020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability.
    Anantharaman V; Aravind L
    BMC Genomics; 2004 Jul; 5(1):45. PubMed ID: 15257761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal control of protein synthesis during spermatogenesis.
    Braun RE
    Int J Androl; 2000; 23 Suppl 2():92-4. PubMed ID: 10849508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S. cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex.
    Rendl LM; Bieman MA; Smibert CA
    RNA; 2008 Jul; 14(7):1328-36. PubMed ID: 18469165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and biological functions of TRIM-NHL RNA-binding proteins.
    Connacher RP; Goldstrohm AC
    Wiley Interdiscip Rev RNA; 2021 Mar; 12(2):e1620. PubMed ID: 32738036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron responsive mRNAs: a family of Fe2+ sensitive riboregulators.
    Goss DJ; Theil EC
    Acc Chem Res; 2011 Dec; 44(12):1320-8. PubMed ID: 22026512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors.
    Selinger M; Věchtová P; Tykalová H; Ošlejšková P; Rumlová M; Štěrba J; Grubhoffer L
    Comput Struct Biotechnol J; 2022; 20():2759-2777. PubMed ID: 35685361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translation and silencing in RNA granules: a tale of sand grains.
    Pimentel J; Boccaccio GL
    Front Mol Neurosci; 2014; 7():68. PubMed ID: 25100944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules.
    Ohashi R; Shiina N
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31978946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo.
    Rouget C; Papin C; Boureux A; Meunier AC; Franco B; Robine N; Lai EC; Pelisson A; Simonelig M
    Nature; 2010 Oct; 467(7319):1128-32. PubMed ID: 20953170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.