These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 36732888)

  • 1. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries.
    Huang Z; Du X; Ma M; Wang S; Xie Y; Meng Y; You W; Xiong L
    ChemSusChem; 2023 May; 16(9):e202202358. PubMed ID: 36732888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast and Long-Cycle Stable Aluminum Polyphenylene Batteries.
    Li T; Hu H; Cai T; Liu X; Zhang Y; Zhao L; Xing W; Yan Z
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30927-30936. PubMed ID: 35776526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Porphyrin-Phenylalkynyl-Based Conjugated Organic Polymer as a High-Performance Cathode for Rechargeable Organic Batteries.
    Peng X; Zhou Y; Chen B; Cao W; Sun C; Liao Y; Huang X; Tu X; Chen Z; Liu W; Gao P
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39361519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Multiple Ion Reactions Based on a CoSe
    Yuan Z; Lin Q; Li Y; Han W; Wang L
    Adv Mater; 2023 Apr; 35(17):e2211527. PubMed ID: 36727407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives.
    Cui J; Guo Z; Yi J; Liu X; Wu K; Liang P; Li Q; Liu Y; Wang Y; Xia Y; Zhang J
    ChemSusChem; 2020 May; 13(9):2160-2185. PubMed ID: 32043825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A core-shelled Sb@C nanorod cathode with a graphene aerogel interlayer for high-capacity aluminum ion batteries.
    Li T; Hu H; Cai T; Liu X; Wang Y; Wang L; Zhang Y; Xing W; Yan Z
    Nanoscale; 2022 Jul; 14(29):10566-10572. PubMed ID: 35834227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries.
    Wang L; Lin H; Kong W; Hu Y; Chen R; Zhao P; Shokouhimehr M; Zhang XL; Tie Z; Jin Z
    Nanoscale; 2020 Jun; 12(23):12531-12540. PubMed ID: 32500126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Design for Symmetric All-Organic Batteries.
    Guo H; Dai H; Wang C
    Chempluschem; 2023 Mar; 88(3):e202300026. PubMed ID: 36883246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries.
    Mao M; Wang S; Lin Z; Liu T; Hu YS; Li H; Huang X; Chen L; Suo L
    Adv Mater; 2021 Feb; 33(8):e2005781. PubMed ID: 33470470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries.
    Lu Y; Cai Y; Zhang Q; Chen J
    Adv Mater; 2022 Jun; 34(22):e2104150. PubMed ID: 34617334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Positive Materials for Magnesium Batteries: A Review.
    Tran NA; Do Van Thanh N; Le MLP
    Chemistry; 2021 Jun; 27(36):9198-9217. PubMed ID: 33792101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paving the Path toward Reliable Cathode Materials for Aluminum-Ion Batteries.
    Wu F; Yang H; Bai Y; Wu C
    Adv Mater; 2019 Apr; 31(16):e1806510. PubMed ID: 30767291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonyl and imine conjugated frameworks for aqueous Organo-Aluminum batteries with high specific capacity and low dissolution.
    Lu Y; Hu C; Hu Y; Zhang W; Li Z
    J Colloid Interface Sci; 2024 Jul; 665():181-187. PubMed ID: 38522158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Carbonyl Cathode for Green and Sustainable Aluminum Organic Batteries.
    Liu Y; Luo W; Lu S; Zhang Z; Chao Z; Fan J
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53702-53710. PubMed ID: 36413483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress of the Cathode Material Design for Aqueous Zn-Organic Batteries.
    Bian S; Yang Y; Liu S; Ye F; Tang H; Wu Y; Hu L
    Chemistry; 2024 Mar; 30(13):e202303917. PubMed ID: 38093171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.