These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36732967)

  • 1. The redox structure of Ediacaran and early Cambrian oceans and its controls.
    Li C; Shi W; Cheng M; Jin C; Algeo TJ
    Sci Bull (Beijing); 2020 Dec; 65(24):2141-2149. PubMed ID: 36732967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution.
    Li C; Cheng M; Zhu M; Lyons TW
    Emerg Top Life Sci; 2018 Sep; 2(2):279-288. PubMed ID: 32412626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oceanic oxygenation events in the anoxic Ediacaran ocean.
    Sahoo SK; Planavsky NJ; Jiang G; Kendall B; Owens JD; Wang X; Shi X; Anbar AD; Lyons TW
    Geobiology; 2016 Sep; 14(5):457-68. PubMed ID: 27027776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogenous oceanic redox conditions through the Ediacaran-Cambrian boundary limited the metazoan zonation.
    Zhang J; Fan T; Zhang Y; Lash GG; Li Y; Wu Y
    Sci Rep; 2017 Aug; 7(1):8550. PubMed ID: 28819268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent photic zone euxinia limited ocean oxygenation and animal evolution during the Ediacaran.
    Zheng W; Zhou A; Sahoo SK; Nolan MR; Ostrander CM; Sun R; Anbar AD; Xiao S; Chen J
    Nat Commun; 2023 Jul; 14(1):3920. PubMed ID: 37400445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical Characteristics of Trace Elements and Mineralization Model of the Ediacaran-Early Cambrian Phosphorites, South China.
    Zhang L; Zhang M; Zhu G
    ACS Omega; 2024 Mar; 9(12):13483-13493. PubMed ID: 38559950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation, South China.
    Ding Y; Sun W; Liu S; Xie J; Tang D; Zhou X; Zhou L; Li Z; Song J; Li Z; Xu H; Tang P; Liu K; Li W; Chen D
    Geobiology; 2022 Nov; 20(6):790-809. PubMed ID: 36250398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition.
    Wang D; Ling HF; Struck U; Zhu XK; Zhu M; He T; Yang B; Gamper A; Shields GA
    Nat Commun; 2018 Jul; 9(1):2575. PubMed ID: 29968714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemical evidence for widespread euxinia in the later Cambrian ocean.
    Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR
    Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controls on the evolution of Ediacaran metazoan ecosystems: A redox perspective.
    Bowyer F; Wood RA; Poulton SW
    Geobiology; 2017 Jul; 15(4):516-551. PubMed ID: 28387043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rise and early evolution of animals: where do we stand from a trace-fossil perspective?
    Mángano MG; Buatois LA
    Interface Focus; 2020 Aug; 10(4):20190103. PubMed ID: 32642049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced weathering as a trigger for the rise of atmospheric O
    Li WP; Zhao YY; Zhao MY; Zha XP; Zheng YF
    Sci Rep; 2019 Jul; 9(1):10630. PubMed ID: 31337817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paleo-marine redox environment fluctuation during the early Cambrian: Insight from iron isotope in the Tarim Basin, China.
    Ai Y; Zhu G; Li T; Zhang Z; Zhang Y; Duan P; Liu J; Zhao K; Li X
    Sci Total Environ; 2024 Feb; 912():169277. PubMed ID: 38110098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A stratified redox model for the Ediacaran ocean.
    Li C; Love GD; Lyons TW; Fike DA; Sessions AL; Chu X
    Science; 2010 Apr; 328(5974):80-3. PubMed ID: 20150442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ediacaran marine animal forests and the ventilation of the oceans.
    Gutarra S; Mitchell EG; Dunn FS; Gibson BM; Racicot RA; Darroch SAF; Rahman IA
    Curr Biol; 2024 Jun; 34(11):2528-2534.e3. PubMed ID: 38761801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.
    Budd GE; Jensen S
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):446-473. PubMed ID: 26588818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tectonically driven Ediacaran oxygenation event.
    Williams JJ; Mills BJW; Lenton TM
    Nat Commun; 2019 Jun; 10(1):2690. PubMed ID: 31217418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global marine redox changes drove the rise and fall of the Ediacara biota.
    Zhang F; Xiao S; Romaniello SJ; Hardisty D; Li C; Melezhik V; Pokrovsky B; Cheng M; Shi W; Lenton TM; Anbar AD
    Geobiology; 2019 Nov; 17(6):594-610. PubMed ID: 31353777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation.
    McFadden KA; Huang J; Chu X; Jiang G; Kaufman AJ; Zhou C; Yuan X; Xiao S
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3197-202. PubMed ID: 18299566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.