These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

710 related articles for article (PubMed ID: 36733262)

  • 1. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis.
    Si T; Hopkins Z; Yanev J; Hou J; Gong H
    PLoS One; 2023; 18(11):e0292792. PubMed ID: 37948433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AGImpute: imputation of scRNA-seq data based on a hybrid GAN with dropouts identification.
    Zhu X; Meng S; Li G; Wang J; Peng X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible network-based imputing-and-fusing approach towards the identification of cell types from single-cell RNA-seq data.
    Qi Y; Guo Y; Jiao H; Shang X
    BMC Bioinformatics; 2020 Jun; 21(1):240. PubMed ID: 32527285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.
    Wang T; Zhao H; Xu Y; Wang Y; Shang X; Peng J; Xiao B
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq.
    Raevskiy M; Yanvarev V; Jung S; Del Sol A; Medvedeva YA
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A posterior probability based Bayesian method for single-cell RNA-seq data imputation.
    Chen S; Zheng R; Tian L; Wu FX; Li M
    Methods; 2023 Aug; 216():21-38. PubMed ID: 37315825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
    Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X
    Nucleic Acids Res; 2020 Sep; 48(15):e85. PubMed ID: 32588900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.
    Gao H; Shen W; Li R; Liu C; Wu S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA-seq data analysis based on directed graph neural network.
    Feng X; Zhang H; Lin H; Long H
    Methods; 2023 Mar; 211():48-60. PubMed ID: 36804214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders.
    Bai L; Ji B; Wang S
    BMC Bioinformatics; 2024 Oct; 25(1):317. PubMed ID: 39354334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.