These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36733735)

  • 1. Inter-day repeatability assessment of human retinal blood flow using clinical laser speckle contrast imaging.
    Qiu C; Situ J; Wang SY; Vaghefi E
    Biomed Opt Express; 2022 Nov; 13(11):6136-6152. PubMed ID: 36733735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Preclinical Laser Speckle Contrast Imaging Instrument for Assessing Systemic and Retinal Vascular Function in Small Rodents.
    Patel DD; Dhalla AH; Viehland C; Connor TB; Lipinski DM
    Transl Vis Sci Technol; 2021 Aug; 10(9):19. PubMed ID: 34403474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-exposure Speckle Imaging for Quantitative Evaluation of Cortical Blood Flow.
    Santorelli A; Sullender CT; Dunn AK
    Methods Mol Biol; 2023; 2616():97-111. PubMed ID: 36715931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using pressure-driven flow systems to evaluate laser speckle contrast imaging.
    Sullender CT; Santorelli A; Richards LM; Mannava PK; Smith C; Dunn AK
    J Biomed Opt; 2023 Mar; 28(3):036003. PubMed ID: 36915371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraoperative multi-exposure speckle imaging of cerebral blood flow.
    Richards LM; Kazmi SS; Olin KE; Waldron JS; Fox DJ; Dunn AK
    J Cereb Blood Flow Metab; 2017 Sep; 37(9):3097-3109. PubMed ID: 28112550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All fiber-based illumination system for multi-exposure speckle imaging.
    Smith C; Santorelli A; Engelmann S; Dunn AK
    Biomed Opt Express; 2023 Feb; 14(2):771-782. PubMed ID: 36874493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional imaging of human retina using integrated multispectral and laser speckle contrast imaging.
    Feng X; Yu Y; Zou D; Jin Z; Zhou C; Liu G; Fujimoto JG; Li C; Lu Y; Ren Q
    J Biophotonics; 2022 Feb; 15(2):e202100285. PubMed ID: 34726828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal microcirculation imaging in sickle cell disease patients.
    Birkhoff W; de Vries J; Dent G; Verma A; Kerkhoffs JL; van Meurs AHF; de Kam M; Moerland M; Burggraaf J
    Microvasc Res; 2018 Mar; 116():1-5. PubMed ID: 28943261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery.
    Miller DR; Ashour R; Sullender CT; Dunn AK
    Neurophotonics; 2022 Apr; 9(2):021908. PubMed ID: 35265733
    [No Abstract]   [Full Text] [Related]  

  • 11. Robust flow measurement with multi-exposure speckle imaging.
    Parthasarathy AB; Tom WJ; Gopal A; Zhang X; Dunn AK
    Opt Express; 2008 Feb; 16(3):1975-89. PubMed ID: 18542277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic imaging of cortical blood flow using Multi-Exposure Speckle Imaging.
    Kazmi SM; Parthasarthy AB; Song NE; Jones TA; Dunn AK
    J Cereb Blood Flow Metab; 2013 Jun; 33(6):798-808. PubMed ID: 23571277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging.
    Puissant C; Abraham P; Durand S; Humeau-Heurtier A; Faure S; Lefthériotis G; Rousseau P; Mahé G
    PLoS One; 2013; 8(4):e61320. PubMed ID: 23620742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser speckle contrast imaging for assessment of liver microcirculation.
    Sturesson C; Milstein DM; Post IC; Maas AM; van Gulik TM
    Microvasc Res; 2013 May; 87():34-40. PubMed ID: 23403398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of vulvar blood perfusion in women with provoked vestibulodynia using laser Doppler perfusion imaging and laser speckle imaging.
    Cyr MP; Pinard A; Dubois O; Morin M
    Microvasc Res; 2019 Jan; 121():1-6. PubMed ID: 30121222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging.
    Mennes OA; van Netten JJ; van Baal JG; Steenbergen W
    Physiol Meas; 2019 Jul; 40(6):065002. PubMed ID: 31071696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser speckle contrast imaging, the future DBF imaging technique for TRP target engagement biomarker assays.
    Bamps D; Macours L; Buntinx L; de Hoon J
    Microvasc Res; 2020 May; 129():103965. PubMed ID: 31812705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility and normalization of reactive hyperemia using laser speckle contrast imaging.
    Shirazi BR; Valentine RJ; Lang JA
    PLoS One; 2021; 16(1):e0244795. PubMed ID: 33412561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.