These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 36733744)
1. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Li F; Tang S; Chen Y; Zou H Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744 [TBL] [Abstract][Full Text] [Related]
2. Multi-scale multi-attention network for diabetic retinopathy grading. Xia H; Long J; Song S; Tan Y Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368 [No Abstract] [Full Text] [Related]
3. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN. Durai DBJ; Jaya T Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737 [TBL] [Abstract][Full Text] [Related]
4. CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. He A; Li T; Li N; Wang K; Fu H IEEE Trans Med Imaging; 2021 Jan; 40(1):143-153. PubMed ID: 32915731 [TBL] [Abstract][Full Text] [Related]
5. Fine-grained attention & knowledge-based collaborative network for diabetic retinopathy grading. Tian M; Wang H; Sun Y; Wu S; Tang Q; Zhang M Heliyon; 2023 Jul; 9(7):e17217. PubMed ID: 37449186 [TBL] [Abstract][Full Text] [Related]
6. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
7. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
8. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning. Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377 [TBL] [Abstract][Full Text] [Related]
9. A novel approach for intelligent diagnosis and grading of diabetic retinopathy. Hai Z; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K Comput Biol Med; 2024 Apr; 172():108246. PubMed ID: 38471350 [TBL] [Abstract][Full Text] [Related]
11. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665 [TBL] [Abstract][Full Text] [Related]
12. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
13. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
14. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning. Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028 [TBL] [Abstract][Full Text] [Related]
15. UC-stack: a deep learning computer automatic detection system for diabetic retinopathy classification. Fu Y; Wei Y; Chen S; Chen C; Zhou R; Li H; Qiu M; Xie J; Huang D Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38271723 [No Abstract] [Full Text] [Related]
16. CoT-XNet: contextual transformer with Xception network for diabetic retinopathy grading. Zhao S; Wu Y; Tong M; Yao Y; Qian W; Qi S Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36322995 [No Abstract] [Full Text] [Related]
17. DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. Zhou Y; Wang B; He X; Cui S; Shao L IEEE J Biomed Health Inform; 2022 Jan; 26(1):56-66. PubMed ID: 33332280 [TBL] [Abstract][Full Text] [Related]
18. Fusion network based on the dual attention mechanism and atrous spatial pyramid pooling for automatic segmentation in retinal vessel images. Liang B; Tang C; Xu M; Wu T; Lei Z J Opt Soc Am A Opt Image Sci Vis; 2022 Aug; 39(8):1393-1402. PubMed ID: 36215583 [TBL] [Abstract][Full Text] [Related]
19. Joint Learning of Multi-Level Tasks for Diabetic Retinopathy Grading on Low-Resolution Fundus Images. Wang X; Xu M; Zhang J; Jiang L; Li L; He M; Wang N; Liu H; Wang Z IEEE J Biomed Health Inform; 2022 May; 26(5):2216-2227. PubMed ID: 34648460 [TBL] [Abstract][Full Text] [Related]
20. Diabetic Retinal Grading Using Attention-Based Bilinear Convolutional Neural Network and Complement Cross Entropy. Liu P; Yang X; Jin B; Zhou Q Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]