BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36733758)

  • 21. Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis.
    Hu S; Lei B; Wang S; Wang Y; Feng Z; Shen Y
    IEEE Trans Med Imaging; 2022 Jan; 41(1):145-157. PubMed ID: 34428138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer's disease diagnosis.
    Zhang J; He X; Qing L; Gao F; Wang B
    Comput Methods Programs Biomed; 2022 Apr; 217():106676. PubMed ID: 35167997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swin transformer-based GAN for multi-modal medical image translation.
    Yan S; Wang C; Chen W; Lyu J
    Front Oncol; 2022; 12():942511. PubMed ID: 36003791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Efficient Transformer Based on Global and Local Self-attention for Face Photo-Sketch Synthesis.
    Yu W; Zhu M; Wang N; Wang X; Gao X
    IEEE Trans Image Process; 2022 Dec; PP():. PubMed ID: 37015434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN).
    Bazangani F; Richard FJP; Ghattas B; Guedj E;
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks.
    Kawahara D; Nagata Y
    Rep Pract Oncol Radiother; 2021; 26(1):35-42. PubMed ID: 33948300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation.
    Sajjad M; Ramzan F; Khan MUG; Rehman A; Kolivand M; Fati SM; Bahaj SA
    Microsc Res Tech; 2021 Dec; 84(12):3023-3034. PubMed ID: 34245203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images.
    Mao Y; Chen C; Wang Z; Cheng D; You P; Huang X; Zhang B; Zhao F
    Front Neurosci; 2022; 16():1058487. PubMed ID: 36452330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review on AI in PET imaging.
    Matsubara K; Ibaraki M; Nemoto M; Watabe H; Kimura Y
    Ann Nucl Med; 2022 Feb; 36(2):133-143. PubMed ID: 35029818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TransMed: Transformers Advance Multi-Modal Medical Image Classification.
    Dai Y; Gao Y; Liu F
    Diagnostics (Basel); 2021 Jul; 11(8):. PubMed ID: 34441318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Generation of the Pseudo CT Image Based on the Deep Learning Technique Aimed for the Attenuation Correction of the PET Image].
    Fukui R; Fujii S; Ninomiya H; Fujiwara Y; Ida T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(11):1152-1162. PubMed ID: 33229845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel Connected Generative Adversarial Network with Quadratic Operation for SAR Image Generation and Application for Classification.
    He C; Xiong D; Zhang Q; Liao M
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.
    Leynes AP; Yang J; Wiesinger F; Kaushik SS; Shanbhag DD; Seo Y; Hope TA; Larson PEZ
    J Nucl Med; 2018 May; 59(5):852-858. PubMed ID: 29084824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer's Disease.
    Lin W; Lin W; Chen G; Zhang H; Gao Q; Huang Y; Tong T; Du M;
    Front Neurosci; 2021; 15():646013. PubMed ID: 33935634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of PET Attenuation Map for Whole-Body Time-of-Flight
    Hwang D; Kang SK; Kim KY; Seo S; Paeng JC; Lee DS; Lee JS
    J Nucl Med; 2019 Aug; 60(8):1183-1189. PubMed ID: 30683763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards cross-modal organ translation and segmentation: A cycle- and shape-consistent generative adversarial network.
    Cai J; Zhang Z; Cui L; Zheng Y; Yang L
    Med Image Anal; 2019 Feb; 52():174-184. PubMed ID: 30594770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.