These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36733763)

  • 1. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
    Sours TG; Kulkarni AR
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep machine learning interatomic potential for liquid silica.
    Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA
    Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites.
    Cutini M; Civalleri B; Ugliengo P
    ACS Omega; 2019 Jan; 4(1):1838-1846. PubMed ID: 31459438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy.
    Sauer J
    Acc Chem Res; 2019 Dec; 52(12):3502-3510. PubMed ID: 31765121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferability evaluation of the deep potential model for simulating water-graphene confined system.
    Liu D; Wu J; Lu D
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning Diffusion Monte Carlo Forces.
    Huang C; Rubenstein BM
    J Phys Chem A; 2023 Jan; 127(1):339-355. PubMed ID: 36576803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward accurate ab initio modeling of siliceous zeolite structures.
    Trachta M; Rubeš M; Bludský O
    J Chem Phys; 2022 Mar; 156(9):094708. PubMed ID: 35259911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorine spillover for ceria- vs silica-supported palladium nanoparticles: A MD study using machine learning potentials.
    Liu DJ; Evans JW
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rings and strain in pure silica zeolites.
    Sastre G; Corma A
    J Phys Chem B; 2006 Sep; 110(36):17949-59. PubMed ID: 16956286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of hazardous atoms on the surface of TON zeolite and bilayer silica: a DFT study.
    Shahmoradi A; Ghorbanzadeh Ahangari M; Jahanshahi M; Hamed Mashhadzadeh A
    J Mol Model; 2020 May; 26(6):119. PubMed ID: 32382827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Modeling of Physical Properties of Nanoporous Frameworks: Predicting Mechanical, Thermal, and Adsorption Behavior.
    Hardiagon A; Coudert FX
    Acc Chem Res; 2024 Jun; 57(11):1620-1632. PubMed ID: 38752454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking binding energy calculations for organic structure-directing agents in pure-silica zeolites.
    Schwalbe-Koda D; Gómez-Bombarelli R
    J Chem Phys; 2021 May; 154(17):174109. PubMed ID: 34241075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Accurate Artificial Neural Network Potential Model for MAPbI
    Chen HA; Pao CW
    ACS Omega; 2019 Jun; 4(6):10950-10959. PubMed ID: 31460193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.
    Raju RK; Sivakumar S; Wang X; Ulissi ZW
    J Chem Inf Model; 2023 Oct; 63(20):6192-6197. PubMed ID: 37824704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.