These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36733826)

  • 1. Kinetics of cone specific G-protein signaling in avian photoreceptor cells.
    Yee C; Görtemaker K; Wellpott R; Koch KW
    Front Mol Neurosci; 2023; 16():1107025. PubMed ID: 36733826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein.
    Görtemaker K; Yee C; Bartölke R; Behrmann H; Voß JO; Schmidt J; Xu J; Solovyeva V; Leberecht B; Behrmann E; Mouritsen H; Koch KW
    Cells; 2022 Jun; 11(13):. PubMed ID: 35805127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
    Günther A; Einwich A; Sjulstok E; Feederle R; Bolte P; Koch KW; Solov'yov IA; Mouritsen H
    Curr Biol; 2018 Jan; 28(2):211-223.e4. PubMed ID: 29307554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatial and temporal expression of outer segment proteins during development of Macaca monkey cones.
    Sears S; Erickson A; Hendrickson A
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):971-9. PubMed ID: 10752930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina.
    Wu H; Scholten A; Einwich A; Mouritsen H; Koch KW
    Sci Rep; 2020 Apr; 10(1):7364. PubMed ID: 32355203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing.
    Chetverikova R; Dautaj G; Schwigon L; Dedek K; Mouritsen H
    J R Soc Interface; 2022 Apr; 19(189):20210877. PubMed ID: 35414212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation.
    Wang X; Plachetzki DC; Cote RH
    J Biol Chem; 2019 May; 294(21):8351-8360. PubMed ID: 30962282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexpression of nonvisual opsin, retinal G protein-coupled receptor, and visual pigments in human and bovine cone photoreceptors.
    Zhang Z; Fong HKW
    Mol Vis; 2018; 24():434-442. PubMed ID: 30034210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue.
    Alexander NS; Katayama K; Sun W; Salom D; Gulati S; Zhang J; Mogi M; Palczewski K; Jastrzebska B
    J Biol Chem; 2017 Jun; 292(26):10983-10997. PubMed ID: 28487362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of additional outer segment targeting signals in zebrafish rod opsin.
    Fang X; Peden AA; van Eeden FJM; Malicki JJ
    J Cell Sci; 2021 Mar; 134(6):. PubMed ID: 33589494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual Gene Expression Reveals a cone-to-rod Developmental Progression in Deep-Sea Fishes.
    Lupše N; Cortesi F; Freese M; Marohn L; Pohlmann JD; Wysujack K; Hanel R; Musilova Z
    Mol Biol Evol; 2021 Dec; 38(12):5664-5677. PubMed ID: 34562090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.
    Yewers MS; McLean CA; Moussalli A; Stuart-Fox D; Bennett AT; Knott B
    J Exp Biol; 2015 May; 218(Pt 10):1556-63. PubMed ID: 25827838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photobleaching sequence of a short-wavelength visual pigment.
    Kusnetzow A; Dukkipati A; Babu KR; Singh D; Vought BW; Knox BE; Birge RR
    Biochemistry; 2001 Jul; 40(26):7832-44. PubMed ID: 11425310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages.
    Znoiko SL; Rohrer B; Lu K; Lohr HR; Crouch RK; Ma JX
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1473-9. PubMed ID: 15790918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.