BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36733923)

  • 1. Spatial rehabilitation using virtual auditory space training paradigm in individuals with sensorineural hearing impairment.
    Nisha KV; Uppunda AK; Kumar RT
    Front Neurosci; 2022; 16():1080398. PubMed ID: 36733923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Auditory Space Training-Induced Changes of Auditory Spatial Processing in Listeners with Normal Hearing.
    Nisha KV; Kumar AU
    J Int Adv Otol; 2017 Apr; 13(1):118-127. PubMed ID: 28555603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Maturation and Chronological Aging on Auditory Spatial Processing: A Cross-Sectional Study Across Life Span.
    Nisha KV; Uppunda AK; Konadath S
    Am J Audiol; 2023 Mar; 32(1):119-134. PubMed ID: 36548963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Spatial Training Paradigms on Auditory Spatial Refinement in Normal-Hearing Listeners: A Comparative Study.
    Nisha KV; Kumar AU
    J Audiol Otol; 2022 Jul; 26(3):113-121. PubMed ID: 35196448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-Attentive Neural Signatures of Auditory Spatial Processing in Listeners With Normal Hearing and Sensorineural Hearing Impairment: A Comparative Study.
    Nisha KV; Kumar UA
    Am J Audiol; 2019 Aug; 28(2S):437-449. PubMed ID: 31461328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Musical Training and Its Association With Age-Related Changes in Binaural, Temporal, and Spatial Processing.
    Nisha KV; Durai R; Konadath S
    Am J Audiol; 2022 Sep; 31(3):669-683. PubMed ID: 35772171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Abacus Training on Auditory Spatial Maturation in Children with Normal Hearing.
    Sanjana M; Nisha KV
    Int Arch Otorhinolaryngol; 2023 Jan; 27(1):e56-e66. PubMed ID: 36714899
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of reference interaural time and intensity differences on binaural performance in listeners with normal and impaired hearing.
    Koehnke J; Culotta CP; Hawley ML; Colburn HS
    Ear Hear; 1995 Aug; 16(4):331-53. PubMed ID: 8549890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners.
    Klingel M; Laback B
    J Assoc Res Otolaryngol; 2022 Feb; 23(1):119-136. PubMed ID: 34812980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.
    Cameron S; Dillon H
    J Am Acad Audiol; 2011; 22(10):678-96. PubMed ID: 22212767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binaural cue sensitivity in cochlear implant recipients with acoustic hearing preservation.
    Gifford RH; Stecker GC
    Hear Res; 2020 May; 390():107929. PubMed ID: 32182551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimodal Cochlear Implant Listeners' Ability to Perceive Minimal Audible Angle Differences.
    Zaleski-King A; Goupell MJ; Barac-Cikoja D; Bakke M
    J Am Acad Audiol; 2019 Sep; 30(8):659-671. PubMed ID: 30417825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of different cochlear implant microphones on acoustic hearing individuals' binaural benefits for speech perception in noise.
    Aronoff JM; Freed DJ; Fisher LM; Pal I; Soli SD
    Ear Hear; 2011; 32(4):468-84. PubMed ID: 21412155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound Source Localization by Cochlear Implant Recipients with Normal Hearing in the Contralateral Ear: Effects of Spectral Content and Duration of Listening Experience.
    Dillon MT; Rooth MA; Canfarotta MW; Richter ME; Thompson NJ; Brown KD
    Audiol Neurootol; 2022; 27(6):437-448. PubMed ID: 35439753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Approaches to Measure Spatial Release From Masking in Children With Bilateral Cochlear Implants.
    Peng ZE; Litovsky RY
    Ear Hear; 2022; 43(1):101-114. PubMed ID: 34133400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Simulated Interaural Frequency Mismatch on Speech Understanding and Spatial Release From Masking.
    Goupell MJ; Stoelb CA; Kan A; Litovsky RY
    Ear Hear; 2018; 39(5):895-905. PubMed ID: 29337763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners With Bilateral and With Hearing-Preservation Cochlear Implants.
    Loiselle LH; Dorman MF; Yost WA; Cook SJ; Gifford RH
    J Speech Lang Hear Res; 2016 Aug; 59(4):810-8. PubMed ID: 27411035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.