These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36734471)

  • 1. Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction.
    Zhao J; Bai Y; Li Z; Liu J; Wang W; Wang P; Yang B; Shi R; Waterhouse GIN; Wen XD; Dai Q; Zhang T
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202219299. PubMed ID: 36734471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-support interaction induced ZnO overlayer in Cu@ZnO/Al
    Li Z; Li N; Wang N; Zhou B; Yu J; Song B; Yin P; Yang Y
    RSC Adv; 2022 Feb; 12(9):5509-5516. PubMed ID: 35425535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of low-temperature water gas shift reaction on copper.
    Gokhale AA; Dumesic JA; Mavrikakis M
    J Am Chem Soc; 2008 Jan; 130(4):1402-14. PubMed ID: 18181624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggering Water and Methanol Activation for Solar-Driven H
    Luo S; Lin H; Wang Q; Ren X; Hernández-Pinilla D; Nagao T; Xie Y; Yang G; Li S; Song H; Oshikiri M; Ye J
    J Am Chem Soc; 2021 Aug; 143(31):12145-12153. PubMed ID: 34324341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-temperature water-gas shift reaction catalyzed by hybrid NiO@NiCr-layered double hydroxides: catalytic property, kinetics and mechanism investigation.
    Xia S; Dai T; Meng Y; Zhou X; Pan G; Zhang X; Ni Z
    Phys Chem Chem Phys; 2020 Jun; 22(22):12630-12643. PubMed ID: 32458842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of Sodium Additives for Improved Performance of Water-Gas Shift Reaction over Ni-Based Catalysts.
    Li N; Li Z; Wang N; Yu J; Yang Y
    ACS Omega; 2021 Jan; 6(3):2346-2353. PubMed ID: 33521473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An
    Dong Z; Liu W; Zhang L; Wang S; Luo L
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41707-41714. PubMed ID: 34427430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Coupling of Photo and Thermal Conditions for Enhancing CO
    Loh JYY; Ye Y; Kherani NP
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2234-2242. PubMed ID: 31846296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Stacked Plasmonic Metamaterial with Strong Localized Electric Field Enables Highly Efficient Broadband Light-Driven CO
    Shao T; Wang X; Dong H; Liu S; Duan D; Li Y; Song P; Jiang H; Hou Z; Gao C; Xiong Y
    Adv Mater; 2022 Jul; 34(28):e2202367. PubMed ID: 35522089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface plasmon-enhanced photo-driven CO
    Singh S; Verma R; Kaul N; Sa J; Punjal A; Prabhu S; Polshettiwar V
    Nat Commun; 2023 May; 14(1):2551. PubMed ID: 37137916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Kinetically Relevant Consistency in Thermal and Photo-Thermal HCOOH Decomposition over Pd/LaCrO
    Yuan J; Guo J; He Z; Che L; Chen S; Zhang H
    Chemistry; 2022 Apr; 28(19):e202104623. PubMed ID: 35157331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating photo-thermal CO
    Lorber K; Djinović P
    iScience; 2022 Apr; 25(4):104107. PubMed ID: 35378856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Photo- and Thermal Catalyst System for Continuous CO
    Mohan A; Ulmer U; Hurtado L; Loh J; Li YF; Tountas AA; Krevert C; Chan C; Liang Y; Brodersen P; Sain MM; Ozin GA
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33613-33620. PubMed ID: 32609486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Titanium Nitride Tubes Decorated with Ru Nanoparticles as Photo-Thermal Catalyst for CO
    Mateo D; Navarro JC; Khan IS; Ruiz-Martinez J; Gascon J
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function-switchable metal/semiconductor junction enables efficient photocatalytic overall water splitting with selective water oxidation products.
    Wei D; Tan Y; Wang Y; Kong T; Shen S; Mao SS
    Sci Bull (Beijing); 2020 Aug; 65(16):1389-1395. PubMed ID: 36659218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.