These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36734471)

  • 21. Thermodynamically induced in Situ and Tunable Cu Plasmonic Behaviour.
    Inwati GK; Rao Y; Singh M
    Sci Rep; 2018 Feb; 8(1):3006. PubMed ID: 29445223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Active CuO
    Jin R; Easa J; O'Brien CP
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38213-38220. PubMed ID: 34346672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot carrier multiplication in plasmonic photocatalysis.
    Zhou L; Lou M; Bao JL; Zhang C; Liu JG; Martirez JMP; Tian S; Yuan L; Swearer DF; Robatjazi H; Carter EA; Nordlander P; Halas NJ
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Confined Pt
    Rivero-Crespo MA; Mon M; Ferrando-Soria J; Lopes CW; Boronat M; Leyva-Pérez A; Corma A; Hernández-Garrido JC; López-Haro M; Calvino JJ; Ramos-Fernandez EV; Armentano D; Pardo E
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17094-17099. PubMed ID: 30398300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins.
    Li Z; Liu J; Zhao Y; Waterhouse GIN; Chen G; Shi R; Zhang X; Liu X; Wei Y; Wen XD; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2018 Aug; 30(31):e1800527. PubMed ID: 29873126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Stable Plasmonic Cu@Cu
    Lou Y; Zhang Y; Cheng L; Chen J; Zhao Y
    ChemSusChem; 2018 May; 11(9):1505-1511. PubMed ID: 29528560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visible light driven photo-reduction of Cu
    Cao S; Wang CJ; Wang GQ; Chen Y; Lv XJ; Fu WF
    RSC Adv; 2020 Feb; 10(10):5930-5937. PubMed ID: 35497418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water-gas shift on gold catalysts: catalyst systems and fundamental studies.
    Tao FF; Ma Z
    Phys Chem Chem Phys; 2013 Oct; 15(37):15260-70. PubMed ID: 23928722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A catalyst selection method for hydrogen production through Water-Gas Shift Reaction using artificial neural networks.
    Cavalcanti FM; Schmal M; Giudici R; Brito Alves RM
    J Environ Manage; 2019 May; 237():585-594. PubMed ID: 30826640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of the Water-Gas Shift Reaction Catalyzed by Efficient Ruthenium-Based Catalysts: A Computational and Experimental Study.
    Stepić R; Wick CR; Strobel V; Berger D; Vučemilović-Alagić N; Haumann M; Wasserscheid P; Smith AS; Smith DM
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):741-745. PubMed ID: 30467935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solar-Driven Water-Gas Shift Reaction over CuO
    Zhao L; Qi Y; Song L; Ning S; Ouyang S; Xu H; Ye J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7708-7712. PubMed ID: 30942941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of water-gas shift reaction on ZnO [Formula: see text] surface and 6Cu cluster deposited over ZnO [Formula: see text] surface using density functional theory studies.
    Cong VT; Van Son N; Diem DQ; Pham SQT
    J Mol Model; 2022 Mar; 28(4):84. PubMed ID: 35249155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation.
    Zhang HX; Li Y; Li MY; Zhang H; Zhang J
    Nanoscale; 2018 Feb; 10(5):2236-2241. PubMed ID: 29340395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interfaces and Oxygen Vacancies-Enriched Catalysts Derived from Cu-Mn-Al Hydrotalcite towards High-Efficient Water-Gas Shift Reaction.
    Li H; Xiao Z; Liu P; Wang H; Geng J; Lei H; Zhuo O
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.