These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36734597)

  • 41. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.
    Zheng W; Li Y; Zhang C; Zhou X; Pearce R; Bell EW; Huang X; Zhang Y
    Proteins; 2021 Dec; 89(12):1734-1751. PubMed ID: 34331351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA Flexibility Prediction With Sequence Profile and Predicted Solvent Accessibility.
    Wei H; Wang B; Yang J; Gao J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2017-2022. PubMed ID: 31794403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced prediction of RNA solvent accessibility with long short-term memory neural networks and improved sequence profiles.
    Sun S; Wu Q; Peng Z; Yang J
    Bioinformatics; 2019 May; 35(10):1686-1691. PubMed ID: 30321300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DeepSol: a deep learning framework for sequence-based protein solubility prediction.
    Khurana S; Rawi R; Kunji K; Chuang GY; Bensmail H; Mall R
    Bioinformatics; 2018 Aug; 34(15):2605-2613. PubMed ID: 29554211
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seq-SetNet: directly exploiting multiple sequence alignment for protein secondary structure prediction.
    Ju F; Zhu J; Zhang Q; Wei G; Sun S; Zheng WM; Bu D
    Bioinformatics; 2022 Jan; 38(4):990-996. PubMed ID: 34849579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting residue-residue contacts using random forest models.
    Li Y; Fang Y; Fang J
    Bioinformatics; 2011 Dec; 27(24):3379-84. PubMed ID: 22016406
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CLAP: a web-server for automatic classification of proteins with special reference to multi-domain proteins.
    Gnanavel M; Mehrotra P; Rakshambikai R; Martin J; Srinivasan N; Bhaskara RM
    BMC Bioinformatics; 2014 Oct; 15(1):343. PubMed ID: 25282152
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. LRFragLib: an effective algorithm to identify fragments for de novo protein structure prediction.
    Wang T; Yang Y; Zhou Y; Gong H
    Bioinformatics; 2017 Mar; 33(5):677-684. PubMed ID: 27797773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DeepDist: real-value inter-residue distance prediction with deep residual convolutional network.
    Wu T; Guo Z; Hou J; Cheng J
    BMC Bioinformatics; 2021 Jan; 22(1):30. PubMed ID: 33494711
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep graph learning of inter-protein contacts.
    Xie Z; Xu J
    Bioinformatics; 2022 Jan; 38(4):947-953. PubMed ID: 34755837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. aPRBind: protein-RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks.
    Liu Y; Gong W; Zhao Y; Deng X; Zhang S; Li C
    Bioinformatics; 2021 May; 37(7):937-942. PubMed ID: 32821925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multi-objective optimization approach accurately resolves protein domain architectures.
    Bernardes JS; Vieira FR; Zaverucha G; Carbone A
    Bioinformatics; 2016 Feb; 32(3):345-53. PubMed ID: 26458889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PBRpredict-Suite: a suite of models to predict peptide-recognition domain residues from protein sequence.
    Iqbal S; Hoque MT
    Bioinformatics; 2018 Oct; 34(19):3289-3299. PubMed ID: 29726965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of folding mechanisms for Ig-like beta sandwich proteins based on inter-residue average distance statistics methods.
    Aumpuchin P; Kikuchi T
    Proteins; 2019 Feb; 87(2):120-135. PubMed ID: 30520530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.