These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36735025)

  • 1. Masking thiol reactivity with thioamide, thiourea, and thiocarbamate-based MBPs.
    Seo H; Kohlbrand AJ; Stokes RW; Chung J; Cohen SM
    Chem Commun (Camb); 2023 Feb; 59(16):2283-2286. PubMed ID: 36735025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Masking thiol reactivity with thioamide, thiourea, and thiocarbamate-based MBPs.
    Seo H; Kohlbrand AJ; Stokes RW; Chung J; Cohen SM
    Chem Commun (Camb); 2023 Mar; 59(24):3614. PubMed ID: 36912505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of carbocyclic and heterocyclic fused quinolines by cascade radical annulations of unsaturated N-aryl thiocarbamates, thioamides, and thioureas.
    Du W; Curran DP
    Org Lett; 2003 May; 5(10):1765-8. PubMed ID: 12735772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways.
    Zhao Y; Steiger AK; Pluth MD
    J Am Chem Soc; 2019 Aug; 141(34):13610-13618. PubMed ID: 31373809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of donor atom identity on metal-binding pharmacophore coordination.
    Dick BL; Patel A; McCammon JA; Cohen SM
    J Biol Inorg Chem; 2017 Jun; 22(4):605-613. PubMed ID: 28389830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition.
    Adamek RN; Credille CV; Dick BL; Cohen SM
    J Biol Inorg Chem; 2018 Oct; 23(7):1129-1138. PubMed ID: 30003339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
    Cohen SM
    Acc Chem Res; 2017 Aug; 50(8):2007-2016. PubMed ID: 28715203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MeLAD: an integrated resource for metalloenzyme-ligand associations.
    Li G; Su Y; Yan YH; Peng JY; Dai QQ; Ning XL; Zhu CL; Fu C; McDonough MA; Schofield CJ; Huang C; Li GB
    Bioinformatics; 2020 Feb; 36(3):904-909. PubMed ID: 31504189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lewis acid properties of zinc(II) in Its cyclen complex. The structure of [Zn(cyclen)(S=C(NH2)2](ClO4)2 and the bonding of thiourea to metal ions. Some implications for zinc metalloenzymes.
    Salter MH; Reibenspies JH; Jones SB; Hancock RD
    Inorg Chem; 2005 Apr; 44(8):2791-7. PubMed ID: 15819567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors.
    Dick BL; Cohen SM
    Inorg Chem; 2018 Aug; 57(15):9538-9543. PubMed ID: 30009599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the selectivity of metalloenzyme inhibitors.
    Day JA; Cohen SM
    J Med Chem; 2013 Oct; 56(20):7997-8007. PubMed ID: 24074025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing Metal-Binding Isosteres of 8-Hydroxyquinoline as Metalloenzyme Inhibitor Scaffolds.
    Seo H; Jackl MK; Kalaj M; Cohen SM
    Inorg Chem; 2022 May; 61(19):7631-7641. PubMed ID: 35507007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct recognition and quantification by voltammetry of thiol/thioamide mixes in seawater.
    Laglera LM; Tovar-Sánchez A
    Talanta; 2012 Jan; 89():496-504. PubMed ID: 22284523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship.
    Buchholz M; Heiser U; Schilling S; Niestroj AJ; Zunkel K; Demuth HU
    J Med Chem; 2006 Jan; 49(2):664-77. PubMed ID: 16420052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and cytotoxic evaluation of quinazolin-4(3H)-one derivatives bearing thiocarbamate, thiourea or N-methyldithiocarbamate side chains.
    Cao SL; Xu H; Wang Y; Liao J; Zhang JJ; Li ZF; Guo YW; Li XR; Cui XM; Xu X
    Med Chem; 2012 Mar; 8(2):163-73. PubMed ID: 22385175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores.
    Xiao YC; Yu JL; Dai QQ; Li G; Li GB
    J Med Chem; 2021 Dec; 64(24):17706-17727. PubMed ID: 34875836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear magnetic resonance studies on covalent modification of amino acids thiol and amino residues by monofunctional aryl 13C-isocyanates, models of skin and respiratory sensitizers: transformation of thiocarbamates into urea adducts.
    Fleischel O; Giménez-Arnau E; Lepoittevin JP
    Chem Res Toxicol; 2009 Jun; 22(6):1106-15. PubMed ID: 19405514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K₂S₂O₈-Promoted Aryl Thioamides Synthesis from Aryl Aldehydes Using Thiourea as the Sulfur Source.
    Bian Y; Qu X; Chen Y; Li J; Liu L
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30200457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the influence of the protein environment on metal-binding pharmacophores.
    Martin DP; Blachly PG; McCammon JA; Cohen SM
    J Med Chem; 2014 Aug; 57(16):7126-35. PubMed ID: 25116076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective carbolithiation of S-alkenyl-N-aryl thiocarbamates: kinetic and thermodynamic control.
    Castagnolo D; Degennaro L; Luisi R; Clayden J
    Org Biomol Chem; 2015 Feb; 13(8):2330-40. PubMed ID: 25562487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.