BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36735165)

  • 1. RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function.
    Zhu X; Li W; Gao J; Shen J; Xu Y; Zhang C; Qian C
    Med Oncol; 2023 Feb; 40(3):89. PubMed ID: 36735165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability.
    Tang J; Sheng J; Zhang Q; Ji Y; Wang X; Zhang J; Wu J; Song J; Bai X; Liang T
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36849200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enforced expression of Runx3 improved CAR-T cell potency in solid tumor via enhancing resistance to activation-induced cell death.
    Wang Y; Zhang H; Du G; Luo H; Su J; Sun Y; Zhou M; Shi B; Li HQX; Jiang H; Li Z
    Mol Ther; 2023 Mar; 31(3):701-714. PubMed ID: 36523165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.
    Martinez M; Moon EK
    Front Immunol; 2019; 10():128. PubMed ID: 30804938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors.
    Liang S; Zheng R; Zuo B; Li J; Wang Y; Han Y; Dong H; Zhao X; Zhang Y; Wang P; Meng R; Jia L; Yang A; Yan B
    Cell Mol Immunol; 2024 Mar; 21(3):213-226. PubMed ID: 38177245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion.
    Gumber D; Wang LD
    EBioMedicine; 2022 Mar; 77():103941. PubMed ID: 35301179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.
    Zhang ZZ; Wang T; Wang XF; Zhang YQ; Song SX; Ma CQ
    Pharmacol Res; 2022 Jan; 175():106036. PubMed ID: 34920118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors.
    Kosti P; Maher J; Arnold JN
    Front Immunol; 2018; 9():1104. PubMed ID: 29872437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-expression IL-15 receptor alpha with IL-15 reduces toxicity via limiting IL-15 systemic exposure during CAR-T immunotherapy.
    Zhang Y; Zhuang Q; Wang F; Zhang C; Xu C; Gu A; Zhong WH; Hu Y; Zhong X
    J Transl Med; 2022 Sep; 20(1):432. PubMed ID: 36167591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hurdles to breakthrough in CAR T cell therapy of solid tumors.
    Marofi F; Achmad H; Bokov D; Abdelbasset WK; Alsadoon Z; Chupradit S; Suksatan W; Shariatzadeh S; Hasanpoor Z; Yazdanifar M; Shomali N; Khiavi FM
    Stem Cell Res Ther; 2022 Apr; 13(1):140. PubMed ID: 35365241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Cytokine Signaling to Improve CAR T Cell Effector Function.
    Bell M; Gottschalk S
    Front Immunol; 2021; 12():684642. PubMed ID: 34177932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment.
    Zhao Z; Xiao X; Saw PE; Wu W; Huang H; Chen J; Nie Y
    Sci China Life Sci; 2020 Feb; 63(2):180-205. PubMed ID: 31883066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors.
    Miao L; Zhang Z; Ren Z; Tang F; Li Y
    Front Immunol; 2021; 12():687822. PubMed ID: 34093592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of Cbl-b inhibits CD8
    Kumar J; Kumar R; Kumar Singh A; Tsakem EL; Kathania M; Riese MJ; Theiss AL; Davila ML; Venuprasad K
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33462140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexpression of
    Xu T; Wang C; Chen X; Bai J; Wang E; Sun M
    Immunotherapy; 2022 Dec; 14(18):1457-1466. PubMed ID: 36597720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors.
    Yu T; Yu SK; Xiang Y; Lu KH; Sun M
    Front Immunol; 2022; 13():936496. PubMed ID: 35903099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.
    Siegler EL; Wang P
    Hum Gene Ther; 2018 May; 29(5):534-546. PubMed ID: 29390873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PD-1 silencing improves anti-tumor activities of human mesothelin-targeted CAR T cells.
    Liu G; Zhang Q; Li D; Zhang L; Gu Z; Liu J; Liu G; Yang M; Gu J; Cui X; Pan Y; Tian X
    Hum Immunol; 2021 Feb; 82(2):130-138. PubMed ID: 33341289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype.
    Gargett T; Truong N; Ebert LM; Yu W; Brown MP
    Cytotherapy; 2019 Jun; 21(6):593-602. PubMed ID: 30975603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-function chimeric antigen receptor T cells targeting c-Met and PD-1 exhibit potent anti-tumor efficacy in solid tumors.
    Yuan X; Sun Z; Yuan Q; Hou W; Liang Q; Wang Y; Mo W; Wang H; Yu M
    Invest New Drugs; 2021 Feb; 39(1):34-51. PubMed ID: 32772342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.