These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 36735399)
1. Reduction of Gadolinium-Based Contrast Agents in MRI Using Convolutional Neural Networks and Different Input Protocols: Limited Interchangeability of Synthesized Sequences With Original Full-Dose Images Despite Excellent Quantitative Performance. Haase R; Pinetz T; Bendella Z; Kobler E; Paech D; Block W; Effland A; Radbruch A; Deike-Hofmann K Invest Radiol; 2023 Jun; 58(6):420-430. PubMed ID: 36735399 [TBL] [Abstract][Full Text] [Related]
2. Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction. Haase R; Pinetz T; Kobler E; Bendella Z; Gronemann C; Paech D; Radbruch A; Effland A; Deike K Invest Radiol; 2024 Jul; ():. PubMed ID: 39074258 [TBL] [Abstract][Full Text] [Related]
3. Can Deep Learning Replace Gadolinium in Neuro-Oncology?: A Reader Study. Ammari S; Bône A; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Menu Y; Bidault F; Nicolas F; Robert P; Rohé MM; Lassau N Invest Radiol; 2022 Feb; 57(2):99-107. PubMed ID: 34324463 [TBL] [Abstract][Full Text] [Related]
4. From Dose Reduction to Contrast Maximization: Can Deep Learning Amplify the Impact of Contrast Media on Brain Magnetic Resonance Image Quality? A Reader Study. Bône A; Ammari S; Menu Y; Balleyguier C; Moulton E; Chouzenoux É; Volk A; Garcia GCTE; Nicolas F; Robert P; Rohé MM; Lassau N Invest Radiol; 2022 Aug; 57(8):527-535. PubMed ID: 35446300 [TBL] [Abstract][Full Text] [Related]
5. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. Gong E; Pauly JM; Wintermark M; Zaharchuk G J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269 [TBL] [Abstract][Full Text] [Related]
6. Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Kleesiek J; Morshuis JN; Isensee F; Deike-Hofmann K; Paech D; Kickingereder P; Köthe U; Rother C; Forsting M; Wick W; Bendszus M; Schlemmer HP; Radbruch A Invest Radiol; 2019 Oct; 54(10):653-660. PubMed ID: 31261293 [TBL] [Abstract][Full Text] [Related]
7. Synthesizing Contrast-Enhanced MR Images from Noncontrast MR Images Using Deep Learning. Murugesan G; Yu FF; Achilleos M; DeBevits J; Nalawade S; Ganesh C; Wagner B; Madhuranthakam AJ; Maldjian JA AJNR Am J Neuroradiol; 2024 Mar; 45(3):312-319. PubMed ID: 38453408 [TBL] [Abstract][Full Text] [Related]
8. Clinical Feasibility of Gadoxetic Acid-Enhanced Isotropic High-Resolution 3-Dimensional Magnetic Resonance Cholangiography Using an Iterative Denoising Algorithm for Evaluation of the Biliary Anatomy of Living Liver Donors. Kang HJ; Lee JM; Ahn SJ; Bae JS; Kannengiesser S; Kiefer B; Suh KS Invest Radiol; 2019 Feb; 54(2):103-109. PubMed ID: 30281556 [TBL] [Abstract][Full Text] [Related]
9. Amplifying the Effects of Contrast Agents on Magnetic Resonance Images Using a Deep Learning Method Trained on Synthetic Data. Fringuello Mingo A; Colombo Serra S; Macula A; Bella D; La Cava F; Alì M; Papa S; Tedoldi F; Smits M; Bifone A; Valbusa G Invest Radiol; 2023 Dec; 58(12):853-864. PubMed ID: 37378418 [TBL] [Abstract][Full Text] [Related]
10. [Abdominal and pelvic segmented T1-weighted echo-planar imaging and MRI. Comparison with T1-TSE and T2-UTSE sequences]. Maubon A; Berger V; Aubas P; Ferru JM; Rouanet JP J Radiol; 1999 Mar; 80(3):291-6. PubMed ID: 10327336 [TBL] [Abstract][Full Text] [Related]
11. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Brandão S; Seixas D; Ayres-Basto M; Castro S; Neto J; Martins C; Ferreira JC; Parada F Clin Radiol; 2013 Nov; 68(11):e617-23. PubMed ID: 23932678 [TBL] [Abstract][Full Text] [Related]
12. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602 [TBL] [Abstract][Full Text] [Related]
13. Interest of diffusion-weighted and gadolinium-enhanced dynamic MR sequences for the diagnosis of parotid gland tumors. Lechner Goyault J; Riehm S; Neuville A; Gentine A; Veillon F J Neuroradiol; 2011 May; 38(2):77-89. PubMed ID: 20542568 [TBL] [Abstract][Full Text] [Related]
14. Comparison of lesion enhancement between BB Cube and 3D-SPGR images for brain tumors with 1.5-T magnetic resonance imaging. Hasegawa H; Ashikaga R; Okajima K; Wakayama T; Miyoshi M; Nishimura Y; Murakami T Jpn J Radiol; 2017 Aug; 35(8):463-471. PubMed ID: 28540464 [TBL] [Abstract][Full Text] [Related]
15. A multi-task generative model for simultaneous post-contrast MR image synthesis and brainstem glioma segmentation. Zhang Y; Huang Y; Xiong X; Liu Y; Qi J Magn Reson Imaging; 2024 Nov; 113():110210. PubMed ID: 39033886 [TBL] [Abstract][Full Text] [Related]
16. Value of gadofosveset-enhanced MRI and multiplanar reformatting for selecting good responders after chemoradiation for rectal cancer. Heijnen LA; Maas M; Lahaye MJ; Lalji U; Lambregts DM; Martens MH; Riedl RG; Beets GL; Beets-Tan RG Eur Radiol; 2014 Aug; 24(8):1845-52. PubMed ID: 24898096 [TBL] [Abstract][Full Text] [Related]
17. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity. Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067 [TBL] [Abstract][Full Text] [Related]
18. Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. Zhang H; Tang X; Lv Y; Hu D; Sun J; Wang Y; Zhou J; Peng Y Biomed Res Int; 2020; 2020():6418343. PubMed ID: 32509865 [TBL] [Abstract][Full Text] [Related]
19. A generic deep learning model for reduced gadolinium dose in contrast-enhanced brain MRI. Pasumarthi S; Tamir JI; Christensen S; Zaharchuk G; Zhang T; Gong E Magn Reson Med; 2021 Sep; 86(3):1687-1700. PubMed ID: 33914965 [TBL] [Abstract][Full Text] [Related]
20. Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules: preliminary results of multivariate analysis. Yoon MA; Kim SH; Park HS; Lee DH; Lee JY; Han JK; Choi BI Invest Radiol; 2009 Oct; 44(10):641-9. PubMed ID: 19724237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]