BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 36735961)

  • 1. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs.
    Ahlfeld T; Cubo-Mateo N; Cometta S; Guduric V; Vater C; Bernhardt A; Akkineni AR; Lode A; Gelinsky M
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12557-12572. PubMed ID: 32092249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs.
    Kilian D; Ahlfeld T; Akkineni AR; Bernhardt A; Gelinsky M; Lode A
    Sci Rep; 2020 May; 10(1):8277. PubMed ID: 32427838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs.
    Chrungoo S; Bharadwaj T; Verma D
    Int J Biol Macromol; 2024 May; 266(Pt 1):131123. PubMed ID: 38537853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink.
    Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M
    Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylcellulose - a versatile printing material that enables biofabrication of tissue equivalents with high shape fidelity.
    Ahlfeld T; Guduric V; Duin S; Akkineni AR; Schütz K; Kilian D; Emmermacher J; Cubo-Mateo N; Dani S; Witzleben MV; Spangenberg J; Abdelgaber R; Richter RF; Lode A; Gelinsky M
    Biomater Sci; 2020 Apr; 8(8):2102-2110. PubMed ID: 32236265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles.
    Kara Özenler A; Distler T; Akkineni AR; Tihminlioglu F; Gelinsky M; Boccaccini AR
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues.
    Bastos AR; da Silva LP; Maia FR; Franco A; Noro J; Silva C; Oliveira JM; Reis RL; Correlo VM
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132611. PubMed ID: 38797304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability.
    Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell bioprinting of vascularized
    Taymour R; Chicaiza-Cabezas NA; Gelinsky M; Lode A
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36070706
    [No Abstract]   [Full Text] [Related]  

  • 16. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering.
    Choe G; Lee M; Oh S; Seok JM; Kim J; Im S; Park SA; Lee JY
    Biomater Adv; 2022 May; 136():212789. PubMed ID: 35929321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting.
    Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS
    Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of vascularized tissue-engineered bone models using triaxial bioprinting.
    Zhang J; Suttapreyasri S; Leethanakul C; Samruajbenjakun B
    J Biomed Mater Res A; 2024 Jul; 112(7):1093-1106. PubMed ID: 38411369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.