These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36736133)

  • 1. Thermomechanical damage in cortical bone caused by margins of surgical drill bit: A finite element analysis.
    Akhbar MFA
    Comput Methods Programs Biomed; 2023 Apr; 231():107361. PubMed ID: 36736133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surgical Drill Bit Design and Thermomechanical Damage in Bone Drilling: A Review.
    Akhbar MFA; Sulong AW
    Ann Biomed Eng; 2021 Jan; 49(1):29-56. PubMed ID: 32860111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions.
    Ali Akhbar MF; Yusoff AR
    Proc Inst Mech Eng H; 2019 Feb; 233(2):207-218. PubMed ID: 30572787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters.
    Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK
    Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does Irrigating While Drilling Decrease Bone Damage?
    Woods JC; Cook JL; Bozynski CC; Tegethoff JD; Kuroki K; Crist BD
    Iowa Orthop J; 2022; 42(2):22-29. PubMed ID: 36601237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of drill quality on biological damage in bone drilling.
    Alam K; Qamar SZ; Iqbal M; Piya S; Al-Kindi M; Qureshi A; Al-Ghaithi A; Al-Sumri B; Silberschmidt VV
    Sci Rep; 2023 Apr; 13(1):6234. PubMed ID: 37069203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel crescent drill design and mechanistic force modeling for thrust force reduction in bone drilling.
    Liu S; Wu D; Zhao J; Yang T; Sun J; Gong K
    Med Eng Phys; 2022 May; 103():103795. PubMed ID: 35500995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Study of Thrust Force and Torque for Drilling Cortical Bone.
    Sui J; Sugita N
    Ann Biomed Eng; 2019 Mar; 47(3):802-812. PubMed ID: 30627838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on biological damage in bone in vibrational drilling.
    Alam K; Iqbal M; Umer J; Amjad M; Al-Ghaithi A
    Biomed Mater Eng; 2020; 31(5):269-277. PubMed ID: 32986649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.
    Chen YC; Tu YK; Zhuang JY; Tsai YJ; Yen CY; Hsiao CK
    Med Biol Eng Comput; 2017 Nov; 55(11):1949-1957. PubMed ID: 28353132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical Evaluation of Temperature Rising and Applied Force in Controlled Cortical Bone Drilling: an Animal in Vitro Study.
    Ein-Afshar MJ; Shahrezaee M; Shahrezaee MH; Sharifzadeh SR
    Arch Bone Jt Surg; 2020 Sep; 8(5):605-612. PubMed ID: 33088862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing temperature elevation of robotic bone drilling.
    Feldmann A; Wandel J; Zysset P
    Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tool parameters to minimize temperature changes in bone drilling.
    Schofield EA; Reiss SL; Rey AE; Kinney R; Song SE
    Injury; 2023 Mar; 54(3):904-909. PubMed ID: 36621360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical and thermal damage in cortical bone drilling in vivo.
    Zhang Y; Xu L; Wang C; Chen Z; Han S; Chen B; Chen J
    Proc Inst Mech Eng H; 2019 Jun; 233(6):621-635. PubMed ID: 30922161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ tool wear monitoring and its effects on the performance of porcine cortical bone drilling: a comparative in-vitro investigation.
    Gupta V; Pandey PM
    Mech Adv Mater Mod Process; 2017; 3(1):2. PubMed ID: 32355608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evaluation of cortical bone substitute materials for tool development, surgical training and drill bit wear investigations.
    Feldmann A; Schweizer M; Stucki S; Nolte L
    Med Eng Phys; 2019 Apr; 66():107-112. PubMed ID: 30850335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.
    Hein C; Inceoglu S; Juma D; Zuckerman L
    J Orthop Trauma; 2017 Feb; 31(2):e55-e59. PubMed ID: 27682019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new thermal model for bone drilling with applications to orthopaedic surgery.
    Lee J; Rabin Y; Ozdoganlar OB
    Med Eng Phys; 2011 Dec; 33(10):1234-44. PubMed ID: 21803638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a self-centring drill bit for orthopaedic surgery: A systematic comparison of the drilling performance.
    Bai W; Pan P; Shu L; Yang Y; Zhang J; Xu J; Sugita N
    J Mech Behav Biomed Mater; 2021 Nov; 123():104727. PubMed ID: 34492615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.