These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36736643)

  • 1. Automated model discovery for human brain using Constitutive Artificial Neural Networks.
    Linka K; St Pierre SR; Kuhl E
    Acta Biomater; 2023 Apr; 160():134-151. PubMed ID: 36736643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generic physics-informed neural network-based constitutive model for soft biological tissues.
    Liu M; Liang L; Sun W
    Comput Methods Appl Mech Eng; 2020 Dec; 372():. PubMed ID: 34012180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic parameter identification of human brain tissue.
    Budday S; Sommer G; Holzapfel GA; Steinmann P; Kuhl E
    J Mech Behav Biomed Mater; 2017 Oct; 74():463-476. PubMed ID: 28756040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and
    Geoffrey A S B; Madaj R; Valluri PP
    J Biomol Struct Dyn; 2023 Mar; 41(5):1790-1797. PubMed ID: 35007471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable automated coding of clinical notes using hierarchical label-wise attention networks and label embedding initialisation.
    Dong H; Suárez-Paniagua V; Whiteley W; Wu H
    J Biomed Inform; 2021 Apr; 116():103728. PubMed ID: 33711543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Polynomial Neural Networks.
    Chrysos GG; Moschoglou S; Bouritsas G; Deng J; Panagakis Y; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2022 Aug; 44(8):4021-4034. PubMed ID: 33571091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks.
    Rachmadi MF; Valdés-Hernández MDC; Makin S; Wardlaw J; Komura T
    Med Image Anal; 2020 Jul; 63():101712. PubMed ID: 32428823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory.
    Yang Z; Zhuang X; Sreenivasan K; Mishra V; Curran T; Cordes D
    Med Image Anal; 2020 Feb; 60():101622. PubMed ID: 31811979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training deep neural density estimators to identify mechanistic models of neural dynamics.
    Gonçalves PJ; Lueckmann JM; Deistler M; Nonnenmacher M; Öcal K; Bassetto G; Chintaluri C; Podlaski WF; Haddad SA; Vogels TP; Greenberg DS; Macke JH
    Elife; 2020 Sep; 9():. PubMed ID: 32940606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Artificial Neural Networks Reveal a Distributed Cortical Network Encoding Propositional Sentence-Level Meaning.
    Anderson AJ; Kiela D; Binder JR; Fernandino L; Humphries CJ; Conant LL; Raizada RDS; Grimm S; Lalor EC
    J Neurosci; 2021 May; 41(18):4100-4119. PubMed ID: 33753548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elasticity imaging using physics-informed neural networks: Spatial discovery of elastic modulus and Poisson's ratio.
    Kamali A; Sarabian M; Laksari K
    Acta Biomater; 2023 Jan; 155():400-409. PubMed ID: 36402297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive experimental study on material properties of human brain tissue.
    Jin X; Zhu F; Mao H; Shen M; Yang KH
    J Biomech; 2013 Nov; 46(16):2795-801. PubMed ID: 24112782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques.
    Teng Z; Yuan J; Feng J; Zhang Y; Brown AJ; Wang S; Lu Q; Gillard JH
    J Biomech; 2015 Nov; 48(14):3912-21. PubMed ID: 26472305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.