These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36736835)

  • 1. Adsorption of ionic and neutral pharmaceuticals and endocrine-disrupting chemicals on activated carbon fiber: batch isotherm and modeling studies.
    Zhao Y; Wu G; Wei W; Song MH; Cho CW; Yun YS
    Chemosphere; 2023 Apr; 319():138042. PubMed ID: 36736835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments.
    Zhao Y; Cho CW; Wang D; Choi JW; Lin S; Yun YS
    Chemosphere; 2020 May; 247():125909. PubMed ID: 31972492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of adsorptive interactions of ionic and neutral pharmaceuticals and other chemicals with the surface of Escherichia coli cells in aquatic environment.
    Cho CW; Park JS; Zhao Y; Yun YS
    Environ Pollut; 2017 Aug; 227():8-14. PubMed ID: 28454022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption modeling of microcrystalline cellulose for pharmaceutical-based micropollutants.
    Cho BG; Mun SB; Lim CR; Kang SB; Cho CW; Yun YS
    J Hazard Mater; 2022 Mar; 426():128087. PubMed ID: 34923381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSAR modelling for predicting adsorption of neutral, cationic, and anionic pharmaceuticals and other neutral compounds to microalgae Chlorella vulgaris in aquatic environment.
    Cho CW; Zhao Y; Yun YS
    Water Res; 2019 Mar; 151():288-295. PubMed ID: 30616041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting adsorption of micropollutants on non-functionalized and functionalized multi-walled carbon nanotubes: Experimental study and LFER modeling.
    Zhao Y; Tang H; Wang D; Song MH; Cho CW; Yun YS
    J Hazard Mater; 2021 Jun; 411():125124. PubMed ID: 33858098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.
    Nam SW; Choi DJ; Kim SK; Her N; Zoh KD
    J Hazard Mater; 2014 Apr; 270():144-52. PubMed ID: 24572271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive interaction of cationic pharmaceuticals on activated charcoal: Experimental determination and QSAR modelling.
    Zhao Y; Choi JW; Bediako JK; Song MH; Lin S; Cho CW; Yun YS
    J Hazard Mater; 2018 Oct; 360():529-535. PubMed ID: 30145479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of endocrine-disrupting compounds and a pharmaceutical using activated charcoal from aqueous solution: kinetics, equilibrium, and mechanism studies.
    Zhao Y; Cho CW; Cui L; Wei W; Cai J; Wu G; Yun YS
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33897-33905. PubMed ID: 29959733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of fluoride from water using activated carbon fibres modified with zirconium by a drop-coating method.
    Pang T; Aye Chan TS; Jande YAC; Shen J
    Chemosphere; 2020 Sep; 255():126950. PubMed ID: 32380266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of organic micropollutants on yeast: Batch experiment and modeling.
    Mun SB; Cho BG; Jin SR; Lim CR; Yun YS; Cho CW
    J Environ Manage; 2023 May; 334():117507. PubMed ID: 36809737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of highly polar micropollutants from wastewater by powdered activated carbon.
    Kovalova L; Knappe DR; Lehnberg K; Kazner C; Hollender J
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3607-15. PubMed ID: 23299971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters.
    Zhou J; Saeidi N; Wick LY; Kopinke FD; Georgi A
    Sci Total Environ; 2021 Nov; 794():148508. PubMed ID: 34218142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of organic pollutant removal using Corynebacterium glutamicum fermentation waste.
    Cho CW; Zhao Y; Choi JW; Kim JA; Bediako JK; Lin S; Song MH; Yun YS
    Environ Res; 2021 Jan; 192():110271. PubMed ID: 33002506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.
    Jung C; Park J; Lim KH; Park S; Heo J; Her N; Oh J; Yun S; Yoon Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():702-10. PubMed ID: 24231319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption.
    Ooi CH; Cheah WK; Sim YL; Pung SY; Yeoh FY
    J Environ Manage; 2017 Jul; 197():199-205. PubMed ID: 28384613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of activated carbon fiber adsorption capacity for several common organic vapors: applications for respiratory protection.
    Summers M; Oh J; Lungu CT
    J Air Waste Manag Assoc; 2022 Jun; 72(6):570-580. PubMed ID: 34569912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical/Fe
    Sun Z; Li S; Ding H; Zhu Y; Wang X; Liu H; Zhang Q; Zhao C
    Chemosphere; 2020 Feb; 241():125125. PubMed ID: 31683418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and QSAR studies on adsorptive interaction of anionic nonsteroidal anti-inflammatory drugs with activated charcoal.
    Zhao Y; Choi JW; Lin S; Kim JA; Cho CW; Yun YS
    Chemosphere; 2018 Dec; 212():620-628. PubMed ID: 30173108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals.
    Li L; Yang S; Chen T; Han L; Lian G
    J Pharm Sci; 2018 Apr; 107(4):1122-1130. PubMed ID: 29269270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.