BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36736850)

  • 21. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision.
    Hatton A; Nevelos JE; Nevelos AA; Banks RE; Fisher J; Ingham E
    Biomaterials; 2002 Aug; 23(16):3429-40. PubMed ID: 12099286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wear characteristics of WSU total ankle replacement devices under shear and torsion loads.
    Gundapaneni D; Tsatalis JT; Laughlin RT; Goswami T
    J Mech Behav Biomed Mater; 2015 Apr; 44():202-23. PubMed ID: 25676360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composition and morphology of wear debris in failed uncemented total hip replacement.
    Shanbhag AS; Jacobs JJ; Glant TT; Gilbert JL; Black J; Galante JO
    J Bone Joint Surg Br; 1994 Jan; 76(1):60-7. PubMed ID: 8300684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural cell responses to wear debris from metal-on-metal total disc replacements.
    Lee H; Phillips JB; Hall RM; Tipper JL
    Eur Spine J; 2020 Nov; 29(11):2701-2712. PubMed ID: 31664570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators.
    Tipper JL; Galvin AL; Williams S; McEwen HM; Stone MH; Ingham E; Fisher J
    J Biomed Mater Res A; 2006 Sep; 78(3):473-80. PubMed ID: 16721797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues.
    Campbell P; Ma S; Yeom B; McKellop H; Schmalzried TP; Amstutz HC
    J Biomed Mater Res; 1995 Jan; 29(1):127-31. PubMed ID: 7713952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of UHMWPE wear debris isolated from the periprosthetic femoral tissues from a series of Charnley total hip arthroplasties.
    Bell J; Tipper JL; Ingham E; Stone MH; Wroblewski BM; Fisher J
    Biomed Mater Eng; 2002; 12(2):189-201. PubMed ID: 12122242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement.
    Maloney WJ; Smith RL; Schmalzried TP; Chiba J; Huene D; Rubash H
    J Bone Joint Surg Am; 1995 Sep; 77(9):1301-10. PubMed ID: 7673277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size of metallic and polyethylene debris particles in failed cemented total hip replacements.
    Lee JM; Salvati EA; Betts F; DiCarlo EF; Doty SB; Bullough PG
    J Bone Joint Surg Br; 1992 May; 74(3):380-4. PubMed ID: 1587882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of crosslinking on the wear performance of polyethylene within total ankle arthroplasty.
    Bischoff JE; Fryman JC; Parcell J; Orozco VillaseƱor DA
    Foot Ankle Int; 2015 Apr; 36(4):369-76. PubMed ID: 25370209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of ultra-high molecular weight polyethylene wear debris on MG63 osteosarcoma cells in vitro.
    Dean DD; Schwartz Z; Liu Y; Blanchard CR; Agrawal CM; Mabrey JD; Sylvia VL; Lohmann CH; Boyan BD
    J Bone Joint Surg Am; 1999 Apr; 81(4):452-61. PubMed ID: 10225790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cementless total joint arthroplasty prostheses with titanium-alloy articular surfaces. A human retrieval analysis.
    Nasser S; Campbell PA; Kilgus D; Kossovsky N; Amstutz HC
    Clin Orthop Relat Res; 1990 Dec; (261):171-85. PubMed ID: 2245543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements.
    Goldsmith AA; Dowson D; Isaac GH; Lancaster JG
    Proc Inst Mech Eng H; 2000; 214(1):39-47. PubMed ID: 10718049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of debris from brushing the femoral canal with a plastic brush--a potential cause of loosening in total hip replacement.
    Germain MA; Tipper JL; Ingham E; Makarem R; Wroblewski BM; Fisher J
    Proc Inst Mech Eng H; 1999; 213(6):503-6. PubMed ID: 10635699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wear and osteolysis in total joint replacements.
    Kadoya Y; Kobayashi A; Ohashi H
    Acta Orthop Scand Suppl; 1998 Feb; 278():1-16. PubMed ID: 9524528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation.
    Sieving A; Wu B; Mayton L; Nasser S; Wooley PH
    J Biomed Mater Res A; 2003 Mar; 64(3):457-64. PubMed ID: 12579559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How has the introduction of new bearing surfaces altered the biological reactions to byproducts of wear and modularity?
    Wooley PH
    Clin Orthop Relat Res; 2014 Dec; 472(12):3699-708. PubMed ID: 24942963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and comparison of wear debris from failed total hip implants of different types.
    Hirakawa K; Bauer TW; Stulberg BN; Wilde AH; Secic M
    J Bone Joint Surg Am; 1996 Aug; 78(8):1235-43. PubMed ID: 8753716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solochrome cyanine: A histological stain for cobalt-chromium wear particles in metal-on-metal periprosthetic tissues.
    Papadimitriou-Olivgeri I; Brown JM; Kilpatrick AFR; Gill HS; Athanasou NA
    J Mater Sci Mater Med; 2019 Sep; 30(9):103. PubMed ID: 31493091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.