These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 36736884)

  • 41. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3.
    Gong B; Shin M; Sun J; Jung CH; Bolt EL; van der Oost J; Kim JS
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16359-64. PubMed ID: 25368186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
    Dugar G; Leenay RT; Eisenbart SK; Bischler T; Aul BU; Beisel CL; Sharma CM
    Mol Cell; 2018 Mar; 69(5):893-905.e7. PubMed ID: 29499139
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation.
    Wen S; Zhao Y; Qi X; Cai M; Huang K; Liu H; Kong DX
    Comput Struct Biotechnol J; 2024 Dec; 23():537-548. PubMed ID: 38235361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9.
    Skeens E; Sinha S; Ahsan M; D'Ordine AM; Jogl G; Palermo G; Lisi GP
    Sci Adv; 2024 Mar; 10(10):eadl1045. PubMed ID: 38446895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays.
    Hua B; Wang Y; Park S; Han KY; Singh D; Kim JH; Cheng W; Ha T
    Biochemistry; 2018 Mar; 57(10):1572-1576. PubMed ID: 29457977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32.
    Zheng J; Zhu Y; Huang T; Gao W; He J; Huang Z
    Sci China Life Sci; 2024 Jun; ():. PubMed ID: 38842649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteasomal control of anti-CRISPRs for the regulation of CRISPR/Cas9 activity using Cas9-ACROBAT.
    Martin TD; Watson EV; Choi MY; Nabet B; Gray NS; Xu Q; Elledge SJ
    bioRxiv; 2024 May; ():. PubMed ID: 38798327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An anti-CRISPR that represses its own transcription while blocking Cas9-target DNA binding.
    Deng X; Sun W; Li X; Wang J; Cheng Z; Sheng G; Wang Y
    Nat Commun; 2024 Feb; 15(1):1806. PubMed ID: 38418450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
    Li X; Liao F; Gao J; Song G; Zhang C; Ji N; Wang X; Wen J; He J; Wei Y; Zhang H; Li Z; Yu G; Yin H
    Nucleic Acids Res; 2023 Sep; 51(17):9442-9451. PubMed ID: 37587688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulating CRISPR/Cas9 genome-editing activity by small molecules.
    Chen S; Chen D; Liu B; Haisma HJ
    Drug Discov Today; 2022 Apr; 27(4):951-966. PubMed ID: 34823004
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CRISPR-Cas systems: new players in gene regulation and bacterial physiology.
    Sampson TR; Weiss DS
    Front Cell Infect Microbiol; 2014; 4():37. PubMed ID: 24772391
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anti-CRISPR Protein AcrIIC5 Inhibits CRISPR-Cas9 by Occupying the Target DNA Binding Pocket.
    Hwang S; Shah M; Garcia B; Hashem N; Davidson AR; Moraes TF; Maxwell KL
    J Mol Biol; 2023 Apr; 435(7):167991. PubMed ID: 36736884
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anti-CRISPR AcrIIC5 is a dsDNA mimic that inhibits type II-C Cas9 effectors by blocking PAM recognition.
    Sun W; Zhao X; Wang J; Yang X; Cheng Z; Liu S; Wang J; Sheng G; Wang Y
    Nucleic Acids Res; 2023 Feb; 51(4):1984-1995. PubMed ID: 36744495
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
    Dong D; Guo M; Wang S; Zhu Y; Wang S; Xiong Z; Yang J; Xu Z; Huang Z
    Nature; 2017 Jun; 546(7658):436-439. PubMed ID: 28448066
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.
    Sun W; Yang J; Cheng Z; Amrani N; Liu C; Wang K; Ibraheim R; Edraki A; Huang X; Wang M; Wang J; Liu L; Sheng G; Yang Y; Lou J; Sontheimer EJ; Wang Y
    Mol Cell; 2019 Dec; 76(6):938-952.e5. PubMed ID: 31668930
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.