BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36737144)

  • 1. Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review.
    Zhang D; Yang X; Wang T; Ji X; Wu X
    Anal Chim Acta; 2023 Mar; 1244():340626. PubMed ID: 36737144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The eosinophil peroxidase-hydrogen peroxide-bromide system of human eosinophils generates 5-bromouracil, a mutagenic thymine analogue.
    Henderson JP; Byun J; Mueller DM; Heinecke JW
    Biochemistry; 2001 Feb; 40(7):2052-9. PubMed ID: 11329272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bromide-dependent toxicity of eosinophil peroxidase for endothelium and isolated working rat hearts: a model for eosinophilic endocarditis.
    Slungaard A; Mahoney JR
    J Exp Med; 1991 Jan; 173(1):117-26. PubMed ID: 1985118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives.
    Fang Y; Dehaen W
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33445736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe.
    Kim TI; Hwang B; Lee B; Bae J; Kim Y
    J Am Chem Soc; 2018 Sep; 140(37):11771-11776. PubMed ID: 30156836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2012 Oct; 46(20):11054-61. PubMed ID: 22963047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ultrasensitive Cyclization-Based Fluorescent Probe for Imaging Native HOBr in Live Cells and Zebrafish.
    Xu K; Luan D; Wang X; Hu B; Liu X; Kong F; Tang B
    Angew Chem Int Ed Engl; 2016 Oct; 55(41):12751-4. PubMed ID: 27629766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines.
    Thomas EL; Bozeman PM; Jefferson MM; King CC
    J Biol Chem; 1995 Feb; 270(7):2906-13. PubMed ID: 7852368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dansylglycine, a fluorescent probe for specific determination of halogenating activity of myeloperoxidase and eosinophil peroxidase.
    Bertozo LC; Zeraik ML; Ximenes VF
    Anal Biochem; 2017 Sep; 532():29-37. PubMed ID: 28587811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of 3',5'-di-O-acetyl-2'-deoxyguansoine with hypobromous acid.
    Suzuki T; Nakamura A; Inukai M
    Bioorg Med Chem; 2013 Jul; 21(13):3674-9. PubMed ID: 23685182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypobromous acid, a powerful endogenous electrophile: Experimental and theoretical studies.
    Ximenes VF; Morgon NH; de Souza AR
    J Inorg Biochem; 2015 May; 146():61-8. PubMed ID: 25771434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells.
    Yu F; Song P; Li P; Wang B; Han K
    Chem Commun (Camb); 2012 Aug; 48(62):7735-7. PubMed ID: 22735154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids.
    Carr AC; Decker EA; Park Y; Frei B
    Free Radic Biol Med; 2001 Jul; 31(1):62-72. PubMed ID: 11425491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Old trees bloom new flowers, lysosome targeted near-infrared fluorescent probe for ratiometric sensing of hypobromous acid in vitro and in vivo based on Nile red skeleton.
    Zhao W; Xu P; Ma Y; Song Y; Wang Y; Zhang P; Li B; Zhang Y; Li J; Wu S
    Bioorg Chem; 2024 Feb; 143():107031. PubMed ID: 38086242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysosome-targeted two-photon fluorescent probe for detection of hypobromous acid in vitro and in vivo.
    Ma C; Ma M; Zhang Y; Zhu X; Zhou L; Fang R; Liu X; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():48-54. PubMed ID: 30594853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel near-infrared fluorescent probe for detection of hypobromous acid and its bioimaging applications.
    Qu W; Zhang X; Ma Y; Yu F; Liu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117240. PubMed ID: 31203053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel benzothiazolin-based fluorescent probe for hypobromous acid and its application in environment and biosystems.
    Zhang X; Liu C; Zhu H; Wang K; Liu M; Li X; Ma L; Yu M; Sheng W; Zhu B
    Talanta; 2024 Jan; 266(Pt 1):124969. PubMed ID: 37524040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride.
    Senthilmohan R; Kettle AJ
    Arch Biochem Biophys; 2006 Jan; 445(2):235-44. PubMed ID: 16125131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fluorescein-derived dye aminophenyl fluorescein is a suitable tool to detect hypobromous acid (HOBr)-producing activity in eosinophils.
    Flemmig J; Zschaler J; Remmler J; Arnhold J
    J Biol Chem; 2012 Aug; 287(33):27913-23. PubMed ID: 22718769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo.
    Wu W; Chen Y; d'Avignon A; Hazen SL
    Biochemistry; 1999 Mar; 38(12):3538-48. PubMed ID: 10090740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.