These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3673719)
1. Simulation of the point spread function for light in tissue by a Monte Carlo method. Van der Zee P; Delpy DT Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719 [TBL] [Abstract][Full Text] [Related]
2. Computed point spread functions for light in tissue using a measured volume scattering function. van der Zee P; Delpy DT Adv Exp Med Biol; 1988; 222():191-7. PubMed ID: 3364240 [No Abstract] [Full Text] [Related]
3. Near-infrared imaging in vivo (I): Image restoration technique applicable to the NIR projection images. Araki R; Nashimoto I Adv Exp Med Biol; 1992; 316():155-61. PubMed ID: 1288075 [TBL] [Abstract][Full Text] [Related]
4. An investigation of light transport through scattering bodies with non-scattering regions. Firbank M; Arridge SR; Schweiger M; Delpy DT Phys Med Biol; 1996 Apr; 41(4):767-83. PubMed ID: 8730669 [TBL] [Abstract][Full Text] [Related]
5. Scattering contribution to the double-pass PSF using Monte Carlo simulations. Christaras D; Ginis H; Pennos A; Artal P Ophthalmic Physiol Opt; 2017 May; 37(3):342-346. PubMed ID: 28439979 [TBL] [Abstract][Full Text] [Related]
6. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination/backscattering sounding, part 1: Monte Carlo numerical modeling. Pluciński J; Frydrychowski AF J Biomed Opt; 2007; 12(4):044015. PubMed ID: 17867819 [TBL] [Abstract][Full Text] [Related]
7. [Spectral properties of light migration in apple fruit tissue]. Sun TF; Zhang TT; Zheng TT; Cao ZH; Zhang J Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3088-91. PubMed ID: 24555387 [TBL] [Abstract][Full Text] [Related]
8. Analysis of near-infrared spectroscopy and indocyanine green dye dilution with Monte Carlo simulation of light propagation in the adult brain. Mudra R; Nadler A; Keller E; Niederer P J Biomed Opt; 2006; 11(4):044009. PubMed ID: 16965166 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy. Hiraoka M; Firbank M; Essenpreis M; Cope M; Arridge SR; van der Zee P; Delpy DT Phys Med Biol; 1993 Dec; 38(12):1859-76. PubMed ID: 8108489 [TBL] [Abstract][Full Text] [Related]
10. Application of Monte Carlo simulation-based photon migration for enhanced understanding of near-infrared (NIR) diffuse reflectance. Part I: Depth of penetration in pharmaceutical materials. Shi Z; Anderson CA J Pharm Sci; 2010 May; 99(5):2399-412. PubMed ID: 19967783 [TBL] [Abstract][Full Text] [Related]
11. Statistical basis for the determination of optical pathlength in tissue. Arridge SR; Hiraoka M; Schweiger M Phys Med Biol; 1995 Sep; 40(9):1539-58. PubMed ID: 8532764 [TBL] [Abstract][Full Text] [Related]
12. New aspects in assessment of changes in width of subarachnoid space with near-infrared transillumination-backscattering sounding, part 2: clinical verification in the patient. Frydrychowski AF; Pluciński J J Biomed Opt; 2007; 12(4):044016. PubMed ID: 17867820 [TBL] [Abstract][Full Text] [Related]
13. The effect of optode positioning on optical pathlength in near infrared spectroscopy of brain. van der Zee P; Arridge SR; Cope M; Delpy DT Adv Exp Med Biol; 1990; 277():79-84. PubMed ID: 2096679 [No Abstract] [Full Text] [Related]
14. Differential pathlength factor for diffuse photon scattering through tissue by a pulse-response method. Ultman JS; Piantadosi CA Math Biosci; 1991 Nov; 107(1):73-82. PubMed ID: 1806109 [TBL] [Abstract][Full Text] [Related]
15. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography. Kawaguchi H; Hayashi T; Kato T; Okada E Phys Med Biol; 2004 Jun; 49(12):2753-65. PubMed ID: 15272686 [TBL] [Abstract][Full Text] [Related]
16. Simulation of modulation transfer function using a rendering method. Horiuchi S; Yoshida S; Yamamoto M Opt Express; 2013 Mar; 21(6):7373-83. PubMed ID: 23546121 [TBL] [Abstract][Full Text] [Related]
17. A method to estimate the ratio of absorption coefficients of two wavelengths using phase-modulated near infrared light spectroscopy. Haida M; Miwa M; Shiino A; Chance B Anal Biochem; 1993 Feb; 208(2):348-51. PubMed ID: 8452231 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging. Tyo JS J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):1-10. PubMed ID: 10641832 [TBL] [Abstract][Full Text] [Related]
19. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. Hart VP; Doyle TE Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080 [TBL] [Abstract][Full Text] [Related]
20. Comparison of inhomogeneity correction algorithms in small photon fields. Jones AO; Das IJ Med Phys; 2005 Mar; 32(3):766-76. PubMed ID: 15839349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]