These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36737203)

  • 1. Fabrication of self-assembled core-sheath microfibers via formulation of alginate-based bioinks.
    Chae S; Lee H; Kim G
    Carbohydr Polym; 2023 Apr; 305():120557. PubMed ID: 36737203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.
    Yeo M; Lee JS; Chun W; Kim GH
    Biomacromolecules; 2016 Apr; 17(4):1365-75. PubMed ID: 26998966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks.
    Gao Q; Kim BS; Gao G
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation.
    Yeo M; Kim G
    Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible light-crosslinkable tyramine-conjugated alginate-based microgel bioink for multiple cell-laden 3D artificial organ.
    Lee S; Choi G; Yang YJ; Joo KI; Cha HJ
    Carbohydr Polym; 2023 Aug; 313():120895. PubMed ID: 37182936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core/shell Printing Scaffolds For Tissue Engineering Of Tubular Structures.
    Milojević M; Vihar B; Banović L; Miško M; Gradišnik L; Zidarič T; Maver U
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release.
    Saravanou SF; Ioannidis K; Dimopoulos A; Paxinou A; Kounelaki F; Varsami SM; Tsitsilianis C; Papantoniou I; Pasparakis G
    Carbohydr Polym; 2023 Jul; 312():120790. PubMed ID: 37059530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models.
    Shahabipour F; Tavafoghi M; Aninwene GE; Bonakdar S; Oskuee RK; Shokrgozar MA; Potyondy T; Alambeigi F; Ahadian S
    J Biomed Mater Res A; 2022 May; 110(5):1077-1089. PubMed ID: 35025130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering.
    Lee J; Hong J; Kim W; Kim GH
    Carbohydr Polym; 2020 Dec; 250():116914. PubMed ID: 33049834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coaxial Electrohydrodynamic Bioprinting of Pre-vascularized Cell-laden Constructs for Tissue Engineering.
    Mao M; Liang H; He J; Kasimu A; Zhang Y; Wang L; Li X; Li D
    Int J Bioprint; 2021; 7(3):362. PubMed ID: 34286149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A thermogelling organic-inorganic hybrid hydrogel with excellent printability, shape fidelity and cytocompatibility for 3D bioprinting.
    Hu C; Ahmad T; Haider MS; Hahn L; Stahlhut P; Groll J; Luxenhofer R
    Biofabrication; 2022 Jan; 14(2):. PubMed ID: 34875631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration.
    Campiglio CE; Bidarra SJ; Draghi L; Barrias CC
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110488. PubMed ID: 31924002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.