BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3673722)

  • 1. Role of hypoxia and acetylcholine in the regulation of cerebral blood flow.
    Dora E; Kovach AG
    Adv Exp Med Biol; 1987; 215():237-48. PubMed ID: 3673722
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E; Koller A; Kovách AG
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):447-57. PubMed ID: 6470059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of adenosine to the regulation of cerebral blood flow: the role of calcium ions in the adenosine-induced cerebrocortical vasodilatation.
    Kovách AG; Dóra E
    Adv Exp Med Biol; 1984; 169():315-25. PubMed ID: 6731093
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of theophylline treatment on the functional hyperaemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E
    Acta Physiol Hung; 1986; 68(2):183-97. PubMed ID: 3825555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of theophylline on regional cerebral blood flow responses to hypoxia in newborn piglets.
    McPhee AJ; Maxwell GM
    Pediatr Res; 1987 Jun; 21(6):573-8. PubMed ID: 3601475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderate hypoxia: reactivity of pial arteries and local effect of theophylline.
    Haller C; Kuschinsky W
    J Appl Physiol (1985); 1987 Dec; 63(6):2208-15. PubMed ID: 3436859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the organic calcium antagonist D-600 on cerebrocortical vascular and redox responses evoked by adenosine, anoxia, and epilepsy.
    Kovách AG; Dóra E; Szedlacsek S; Koller A
    J Cereb Blood Flow Metab; 1983 Mar; 3(1):51-61. PubMed ID: 6822618
    [No Abstract]   [Full Text] [Related]  

  • 8. Glycolysis and regulation of cerebral blood flow and metabolism.
    Dóra E; Kovách AG
    Adv Exp Med Biol; 1984; 169():305-14. PubMed ID: 6731092
    [No Abstract]   [Full Text] [Related]  

  • 9. Acetylcholine-induced relaxation in isolated dog cerebral arteries.
    Toda N
    J Pharmacol Exp Ther; 1979 Jun; 209(3):352-8. PubMed ID: 439012
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibitory effects of hypoxia and adenosine on N-methyl-D-aspartate-induced pial arteriolar dilation in piglets.
    Bari F; Thore CR; Louis TM; Busija DW
    Brain Res; 1998 Jan; 780(2):237-44. PubMed ID: 9507150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient metabolic and vascular volume changes following rapid blood pressure alterations which precede the autoregulatory vasodilation of cerebrocortical vessels.
    Kovách AG; Dóra E; Hamar J; Eke A; Szabó L
    Adv Exp Med Biol; 1977 Jul 4-7; 94():705-11. PubMed ID: 207169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of cerebrovascular autoregulation by theophylline.
    Lang R; Zimmer R; Oberdörster G
    Exp Neurol; 1973 Sep; 40(3):661-74. PubMed ID: 4723850
    [No Abstract]   [Full Text] [Related]  

  • 13. Responses of cerebral arteries after ischemia and reperfusion in cats.
    Mayhan WG; Amundsen SM; Faraci FM; Heistad DD
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H879-84. PubMed ID: 3177677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of adenosine in regulation of cerebral blood flow: effects of theophylline during normoxia and hypoxia.
    Morii S; Ngai AC; Ko KR; Winn HR
    Am J Physiol; 1987 Jul; 253(1 Pt 2):H165-75. PubMed ID: 3037925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of reserpine on the pial arteries of the cerebral cortex in cats].
    Dupelj M; Dogan S
    Neuropsihijatrija; 1967; 15(1):123-36. PubMed ID: 5191793
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine deaminase attenuates canine coronary vasodilatation during regional non-ischaemic myocardial hypoxia.
    Merrill GF; Downey HF; Yonekura S; Watanabe N; Jones CE
    Cardiovasc Res; 1988 May; 22(5):345-50. PubMed ID: 3191518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of calcium entry blocker S-emopamil on cerebrocortical metabolism and blood flow changes evoked by graded hypotension.
    Kovách AG; Nguyen LT; Pék L; Dezsi L; Lohinai ZS
    Adv Exp Med Biol; 1989; 248():461-70. PubMed ID: 2782166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex.
    Busija DW; Bari F; Domoki F; Louis T
    Brain Res Rev; 2007 Nov; 56(1):89-100. PubMed ID: 17716743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridine nucleotide redox state and blood flow of the cerebral cortex following middle cerebral artery occlusion in the cat.
    Ginsberg MD; Reivich M; Frinak S; Harbig K
    Stroke; 1976; 7(2):125-31. PubMed ID: 178077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of gamma-aminobutyric acid on cerebral circulation and oxygen tension in the brain].
    Mirzoian SA; Akopian VP
    Farmakol Toksikol; 1967; 30(5):572-4. PubMed ID: 5598918
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.