BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36737789)

  • 21. Multifunctional profiling of triple-negative breast cancer patient-derived tumoroids for disease modeling.
    Cromwell EF; Sirenko O; Nikolov E; Hammer M; Brock CK; Matossian MD; Alzoubi MS; Collins-Burow BM; Burow ME
    SLAS Discov; 2022 Apr; 27(3):191-200. PubMed ID: 35124274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human basal-like breast cancer is represented by one of the two mammary tumor subtypes in dogs.
    Watson J; Wang T; Ho KL; Feng Y; Dobbin KK; Zhao S
    bioRxiv; 2023 Mar; ():. PubMed ID: 37034591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneous breast tumoroids: An in vitro assay for investigating cellular heterogeneity and drug delivery.
    Vamvakidou AP; Mondrinos MJ; Petushi SP; Garcia FU; Lelkes PI; Tozeren A
    J Biomol Screen; 2007 Feb; 12(1):13-20. PubMed ID: 17166827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common plasma protein marker LCAT in aggressive human breast cancer and canine mammary tumor.
    Park HM; Kim H; Kim DW; Yoon JH; Kim BG; Cho JY
    BMB Rep; 2020 Dec; 53(12):664-669. PubMed ID: 33298249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative analysis of the molecular subtype landscape in canine and human mammary gland tumors.
    Bergholtz H; Lien T; Lingaas F; Sørlie T
    J Mammary Gland Biol Neoplasia; 2022 Jun; 27(2):171-183. PubMed ID: 35932380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteome of metastatic canine mammary carcinomas: similarities to and differences from human breast cancer.
    Klopfleisch R; Klose P; Weise C; Bondzio A; Multhaup G; Einspanier R; Gruber AD
    J Proteome Res; 2010 Dec; 9(12):6380-91. PubMed ID: 20932060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors.
    Barbieri F; Thellung S; Ratto A; Carra E; Marini V; Fucile C; Bajetto A; Pattarozzi A; Würth R; Gatti M; Campanella C; Vito G; Mattioli F; Pagano A; Daga A; Ferrari A; Florio T
    BMC Cancer; 2015 Apr; 15():228. PubMed ID: 25884842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intratumoral collagen signatures predict clinical outcomes in feline mammary carcinoma.
    Rosen S; Brisson BK; Durham AC; Munroe CM; McNeill CJ; Stefanovski D; Sørenmo KU; Volk SW
    PLoS One; 2020; 15(8):e0236516. PubMed ID: 32776970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas.
    Ettlin J; Clementi E; Amini P; Malbon A; Markkanen E
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28531107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vitamin D receptor expression in canine mammary gland and relationship with clinicopathological parameters and progesterone/oestrogen receptors.
    Sánchez-Céspedes R; Fernández-Martínez MD; Raya A; Pineda C; López I; Millán Y
    Vet Comp Oncol; 2018 Mar; 16(1):E185-E193. PubMed ID: 29178579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Canine mammary tumours as a model to study human breast cancer: most recent findings.
    Queiroga FL; Raposo T; Carvalho MI; Prada J; Pires I
    In Vivo; 2011; 25(3):455-65. PubMed ID: 21576423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CD44 and CD24 Expression and Prognostic Significance in Canine Mammary Tumors.
    Rogez B; Pascal Q; Bobillier A; Machuron F; Lagadec C; Tierny D; Le Bourhis X; Chopin V
    Vet Pathol; 2019 May; 56(3):377-388. PubMed ID: 30558511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphogenic and tumorigenic potentials of the mammary growth hormone/growth hormone receptor system.
    van Garderen E; Schalken JA
    Mol Cell Endocrinol; 2002 Nov; 197(1-2):153-65. PubMed ID: 12431808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A role for T-lymphocytes in human breast cancer and in canine mammary tumors.
    Carvalho MI; Pires I; Prada J; Queiroga FL
    Biomed Res Int; 2014; 2014():130894. PubMed ID: 24672781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a canine mammary cell line prepared for proteomics analysis.
    Zamani-Ahmadmahmudi M; Nassiri SM; Jahanzad I; Shirani D; Rahbarghazi R; Yazdani B
    Tissue Cell; 2013 Jun; 45(3):183-90. PubMed ID: 23375365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment and characterization of a new triple-negative canine mammary cancer cell line.
    Zhang H; Pei S; Zhou B; Wang H; Du H; Zhang D; Lin D
    Tissue Cell; 2018 Oct; 54():10-19. PubMed ID: 30309498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.
    de Andrés PJ; Illera JC; Cáceres S; Díez L; Pérez-Alenza MD; Peña L
    Vet Immunol Immunopathol; 2013 Apr; 152(3-4):245-51. PubMed ID: 23351639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between the inflammatory tumor microenvironment and different histologic types of canine mammary tumors.
    de Souza TA; de Campos CB; De Biasi Bassani Gonçalves A; Nunes FC; Monteiro LN; de Oliveira Vasconcelos R; Cassali GD
    Res Vet Sci; 2018 Aug; 119():209-214. PubMed ID: 29966962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial tumor matrices and bioengineered tools for tumoroid generation.
    Liu YC; Chen P; Chang R; Liu X; Jhang JW; Enkhbat M; Chen S; Wang H; Deng C; Wang PY
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38306665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and characterization of cancer stem cell-based tumoroids as an osteosarcoma model.
    Ozturk S; Gorgun C; Gokalp S; Vatansever S; Sendemir A
    Biotechnol Bioeng; 2020 Aug; 117(8):2527-2539. PubMed ID: 32391924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.