BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36737933)

  • 1. Digestion, absorption, and transport properties of soy-fermented douchi hypoglycemic peptides VY and SFLLR under simulated gastrointestinal digestion and Caco-2 cell monolayers.
    Yu S; Wang W; Bu T; Zhao R; Niu R; Liu L; Li J; Wu J; Liu D
    Food Res Int; 2023 Feb; 164():112340. PubMed ID: 36737933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Douchi Peptides VY and SFLLR Improve Glucose Homeostasis and Gut Dysbacteriosis in High-Fat Diet-Induced Insulin Resistant Mice.
    Yu S; Wang W; Wang H; Bu T; Liu L; Zhao R; Li S; Liu D; Wu J
    Mol Nutr Food Res; 2023 May; 67(10):e2200681. PubMed ID: 36938917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers.
    Fan H; Xu Q; Hong H; Wu J
    J Agric Food Chem; 2018 Oct; 66(43):11347-11354. PubMed ID: 30280571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and transport of myofibrillar protein-bound N
    Ye M; Qi X; Ren X; Quan W; Xu H; Zeng M; Chen J; Li M
    Food Res Int; 2022 Nov; 161():111870. PubMed ID: 36192990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers.
    Ding L; Wang L; Yu Z; Zhang T; Liu J
    Int J Food Sci Nutr; 2016; 67(2):111-6. PubMed ID: 26883099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of hypoglycemic peptides from traditional Chinese soy-fermented
    Yu S; Liu L; Bu T; Zheng J; Wang W; Wu J; Liu D
    Food Funct; 2022 Mar; 13(6):3343-3352. PubMed ID: 35212690
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers.
    Ding L; Wang L; Zhang T; Yu Z; Liu J
    Food Res Int; 2018 Apr; 106():475-480. PubMed ID: 29579950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepithelial Transport Characteristics of the Cholesterol- Lowing Soybean Peptide, WGAPSL, in Caco-2 Cell Monolayers.
    Zhang H; Duan Y; Feng Y; Wang J
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31387268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, inhibitory mechanism and transepithelial transport of xanthine oxidase inhibitory peptides from whey protein after simulated gastrointestinal digestion and intestinal absorption.
    Qi X; Chen H; Guan K; Sun Y; Wang R; Ma Y
    Food Res Int; 2022 Dec; 162(Pt A):111959. PubMed ID: 36461210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach.
    Antonescu IE; Rasmussen KF; Neuhoff S; Fretté X; Karlgren M; Bergström CAS; Nielsen CU; Steffansen B
    Mol Pharm; 2019 Nov; 16(11):4636-4650. PubMed ID: 31560549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers.
    Xu Q; Fan H; Yu W; Hong H; Wu J
    J Agric Food Chem; 2017 Aug; 65(34):7406-7414. PubMed ID: 28782363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile.
    Miguel M; Dávalos A; Manso MA; de la Peña G; Lasunción MA; López-Fandiño R
    Mol Nutr Food Res; 2008 Dec; 52(12):1507-13. PubMed ID: 18727013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport, Stability, and In Vivo Hypoglycemic Effect of a Broccoli-Derived DPP-IV Inhibitory Peptide VPLVM.
    Pei J; Liu Z; Pan D; Zhao Y; Dang Y; Gao X
    J Agric Food Chem; 2022 Apr; 70(16):4934-4941. PubMed ID: 35436096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers.
    Satake M; Enjoh M; Nakamura Y; Takano T; Kawamura Y; Arai S; Shimizu M
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):378-84. PubMed ID: 11999412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.
    Ding L; Wang L; Zhang Y; Liu J
    J Agric Food Chem; 2015 Sep; 63(37):8143-50. PubMed ID: 26335384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis and Transport of Egg White-Derived Peptides in Caco-2 Cell Monolayers and Everted Rat Sacs.
    Wang L; Ding L; Du Z; Yu Z; Liu J
    J Agric Food Chem; 2019 May; 67(17):4839-4848. PubMed ID: 30969123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transepithelial transport of milk-derived angiotensin I-converting enzyme inhibitory peptide with the RLSFNP sequence.
    Guo Y; Gan J; Zhu Q; Zeng X; Sun Y; Wu Z; Pan D
    J Sci Food Agric; 2018 Feb; 98(3):976-983. PubMed ID: 28714227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partially hydrolyzed soy protein shows enhanced transport of amino acids compared to nonhydrolyzed protein across an intestinal epithelial cell monolayer.
    McGraw NJ; Napawan N; Toland MR; Schulze J; Tulk BM; Krul ES
    J Food Sci; 2014 Sep; 79(9):H1832-40. PubMed ID: 25040304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.