BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36738156)

  • 1. An improved Bayesian approach to estimating the reference interval from a meta-analysis: Directly monitoring the marginal quantiles and characterizing their uncertainty.
    Siegel L; Chu H
    Res Synth Methods; 2023 Jul; 14(4):639-646. PubMed ID: 36738156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the reference range from a meta-analysis.
    Siegel L; Murad MH; Chu H
    Res Synth Methods; 2021 Mar; 12(2):148-160. PubMed ID: 32790064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
    Seide SE; Röver C; Friede T
    BMC Med Res Methodol; 2019 Jan; 19(1):16. PubMed ID: 30634920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective.
    Kruschke JK; Liddell TM
    Psychon Bull Rev; 2018 Feb; 25(1):178-206. PubMed ID: 28176294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Guide to Estimating the Reference Range From a Meta-Analysis Using Aggregate or Individual Participant Data.
    Siegel L; Murad MH; Riley RD; Bazerbachi F; Wang Z; Chu H
    Am J Epidemiol; 2022 Mar; 191(5):948-956. PubMed ID: 35102410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time estimation and forecasting of COVID-19 cases and hospitalizations in Wisconsin HERC regions for public health decision making processes.
    Aravamuthan S; Mandujano Reyes JF; Yandell BS; Döpfer D
    BMC Public Health; 2023 Feb; 23(1):359. PubMed ID: 36803324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data.
    Seide SE; Jensen K; Kieser M
    Res Synth Methods; 2020 May; 11(3):363-378. PubMed ID: 31955519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding and interpreting confidence and credible intervals around effect estimates.
    Hespanhol L; Vallio CS; Costa LM; Saragiotto BT
    Braz J Phys Ther; 2019; 23(4):290-301. PubMed ID: 30638956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When significance becomes insignificant: Effect sizes and their uncertainties in Bayesian and frequentist frameworks as an alternative approach when analyzing ecotoxicological data.
    Feckler A; Low M; Zubrod JP; Bundschuh M
    Environ Toxicol Chem; 2018 Jul; 37(7):1949-1955. PubMed ID: 29508923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian estimation in random effects meta-analysis using a non-informative prior.
    Bodnar O; Link A; Arendacká B; Possolo A; Elster C
    Stat Med; 2017 Jan; 36(2):378-399. PubMed ID: 27790722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are There Differences in Accuracy or Outcomes Scores Among Navigated, Robotic, Patient-specific Instruments or Standard Cutting Guides in TKA? A Network Meta-analysis.
    Bouché PA; Corsia S; Dechartres A; Resche-Rigon M; Nizard R
    Clin Orthop Relat Res; 2020 Sep; 478(9):2105-2116. PubMed ID: 32530896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis.
    Hamaguchi Y; Noma H; Nagashima K; Yamada T; Furukawa TA
    Biom J; 2021 Feb; 63(2):394-405. PubMed ID: 33164247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Uncertainty Estimation for Gaussian Graphical Models and Centrality Indices.
    Jongerling J; Epskamp S; Williams DR
    Multivariate Behav Res; 2023; 58(2):311-339. PubMed ID: 35180031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the reference interval from a fixed effects meta-analysis.
    Cao W; Siegel L; Zhou J; Zhu M; Tong T; Chen Y; Chu H
    Res Synth Methods; 2021 Sep; 12(5):630-640. PubMed ID: 33864652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian approaches to fixed effects meta-analysis.
    Domínguez Islas C; Rice KM
    Res Synth Methods; 2022 Jul; 13(4):520-532. PubMed ID: 35485631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Bayesian and frequentist methods for prevalence estimation under misclassification.
    Flor M; Weiß M; Selhorst T; Müller-Graf C; Greiner M
    BMC Public Health; 2020 Jul; 20(1):1135. PubMed ID: 32689959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian and frequentist approaches to assessing reliability and precision of health-care provider quality measures.
    Staggs VS; Gajewski BJ
    Stat Methods Med Res; 2017 Jun; 26(3):1341-1349. PubMed ID: 25788482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian nonparametric meta-analysis model for estimating the reference interval.
    Cao W; Chu H; Hanson T; Siegel L
    Stat Med; 2024 May; 43(10):1905-1919. PubMed ID: 38409859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Univariate and bivariate likelihood-based meta-analysis methods performed comparably when marginal sensitivity and specificity were the targets of inference.
    Dahabreh IJ; Trikalinos TA; Lau J; Schmid CH
    J Clin Epidemiol; 2017 Mar; 83():8-17. PubMed ID: 28063915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.