BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36738207)

  • 1. [Advances in epigenetic regulation of Chinese hamster ovary cells].
    Yang L; Zhang M; Zhang X; Wang X; Wang T; Jia Y
    Sheng Wu Gong Cheng Xue Bao; 2023 Jan; 39(1):149-158. PubMed ID: 36738207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines.
    Veith N; Ziehr H; MacLeod RA; Reamon-Buettner SM
    BMC Biotechnol; 2016 Jan; 16():6. PubMed ID: 26800878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines.
    Marx N; Eisenhut P; Weinguny M; Klanert G; Borth N
    Biotechnol Adv; 2022; 56():107924. PubMed ID: 35149147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA methylation in CHO cells.
    Wippermann A; Noll T
    J Biotechnol; 2017 Sep; 258():206-210. PubMed ID: 28801067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells.
    Wippermann A; Rupp O; Brinkrolf K; Hoffrogge R; Noll T
    J Biotechnol; 2015 Apr; 199():38-46. PubMed ID: 25701679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells.
    Marx N; Dhiman H; Schmieder V; Freire CM; Nguyen LN; Klanert G; Borth N
    Metab Eng; 2021 Jul; 66():268-282. PubMed ID: 33965614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The art of CHO cell engineering: A comprehensive retrospect and future perspectives.
    Fischer S; Handrick R; Otte K
    Biotechnol Adv; 2015 Dec; 33(8):1878-96. PubMed ID: 26523782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture.
    Hernandez I; Dhiman H; Klanert G; Jadhav V; Auer N; Hanscho M; Baumann M; Esteve-Codina A; Dabad M; Gómez J; Alioto T; Merkel A; Raineri E; Heath S; Rico D; Borth N
    Biotechnol Bioeng; 2019 Mar; 116(3):677-692. PubMed ID: 30512195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random epigenetic modulation of CHO cells by repeated knockdown of DNA methyltransferases increases population diversity and enables sorting of cells with higher production capacities.
    Weinguny M; Eisenhut P; Klanert G; Virgolini N; Marx N; Jonsson A; Ivansson D; Lövgren A; Borth N
    Biotechnol Bioeng; 2020 Nov; 117(11):3435-3447. PubMed ID: 32662873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic comparison of CHO hosts and clones reveals divergent methylation and transcription patterns across lineages.
    Chang M; Kumar A; Kumar S; Huhn S; Timp W; Betenbaugh M; Du Z
    Biotechnol Bioeng; 2022 Apr; 119(4):1062-1076. PubMed ID: 35028935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging role of cellular post-translational modifications in modulating growth and productivity of recombinant Chinese hamster ovary cells.
    Bryan L; Clynes M; Meleady P
    Biotechnol Adv; 2021; 49():107757. PubMed ID: 33895332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.
    Soo BPC; Tay J; Ng S; Ho SCL; Yang Y; Chao SH
    Mol Biotechnol; 2017 Aug; 59(8):315-322. PubMed ID: 28664508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines.
    Osterlehner A; Simmeth S; Göpfert U
    Biotechnol Bioeng; 2011 Nov; 108(11):2670-81. PubMed ID: 21618470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1.
    Matsuyama R; Yamano N; Kawamura N; Omasa T
    J Biosci Bioeng; 2017 Mar; 123(3):382-389. PubMed ID: 27742176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering.
    Glinšek K; Bozovičar K; Bratkovič T
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Promoters Derived from Chinese Hamster Ovary Cells via In Silico and In Vitro Analysis.
    Nguyen LN; Baumann M; Dhiman H; Marx N; Schmieder V; Hussein M; Eisenhut P; Hernandez I; Koehn J; Borth N
    Biotechnol J; 2019 Nov; 14(11):e1900125. PubMed ID: 31271264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies.
    Kim M; O'Callaghan PM; Droms KA; James DC
    Biotechnol Bioeng; 2011 Oct; 108(10):2434-46. PubMed ID: 21538334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells.
    Wippermann A; Klausing S; Rupp O; Albaum SP; Büntemeyer H; Noll T; Hoffrogge R
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):579-89. PubMed ID: 24146078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcloning induces changes in the DNA-methylation pattern of outgrowing Chinese hamster ovary cell colonies.
    Weinguny M; Klanert G; Eisenhut P; Lee I; Timp W; Borth N
    Biotechnol J; 2021 Jun; 16(6):e2000350. PubMed ID: 33484505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.