These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36738410)

  • 1. Optimization of the effect of microelectrodes on Ni
    Samdan C; Bozkurt T
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47311-47327. PubMed ID: 36738410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER).
    Cho S; Kim C; Hwang I
    Chemosphere; 2020 Nov; 259():127382. PubMed ID: 32593816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO
    Samarghandi MR; Dargahi A; Rahmani A; Shabanloo A; Ansari A; Nematollahi D
    Chemosphere; 2021 Sep; 279():130640. PubMed ID: 34134425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced electro-Fenton degradation of a mixture of pharmaceutical and steel industrial wastewater by pallet-activated-carbon using three-dimensional electrode reactor.
    Phan Quang HH; Nguyen TP; Duc Nguyen DD; Ngoc Bao LT; Nguyen DC; Nguyen VH
    Chemosphere; 2022 Jun; 297():134074. PubMed ID: 35219712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of cylindrical electrode with sucrose binder as advanced electrode materials for copper 3D-electro-oxidation.
    Samdan C
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99511-99528. PubMed ID: 37612557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple response optimization for high efficiency energy saving treatment of rhodamine B wastewater in a three-dimensional electrochemical reactor.
    Ji J; Liu Y; Yang XY; Xu J; Li XY
    J Environ Manage; 2018 Jul; 218():300-308. PubMed ID: 29689533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study.
    Song P; Sun C; Wang J; Ai S; Dong S; Sun J; Sun S
    Chemosphere; 2022 Jan; 287(Pt 1):131971. PubMed ID: 34438208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency three-dimensional electrochemical treatment of amoxicillin wastewater using Mn-Co/GAC particle electrodes and optimization of operating condition.
    Ma J; Gao M; Liu Q; Wang Q
    Environ Res; 2022 Jun; 209():112728. PubMed ID: 35081359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic degradation of sulfamethylthiadiazole by GAC@Ni/Fe three-dimensional particle electrode.
    Li S; Lin Y; Zhu S; Liu G
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57112-57126. PubMed ID: 35344147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of nitric acid-modified activated carbon electrode for removal of Co
    Xue Y; Cheng W; Cao M; Gao J; Chen J; Gui Y; Zhu W; Ma F
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77536-77552. PubMed ID: 35680747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.
    Ye X; Zhang J; Zhang Y; Lv Y; Dou R; Wen S; Li L; Chen Y; Hu Y
    Chemosphere; 2016 Dec; 164():304-313. PubMed ID: 27592320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intensive Treatment of Organic Wastewater by Three-Dimensional Electrode System within Mn-Loaded Steel Slag as Catalytic Particle Electrodes.
    Ren X; Fu H; Peng D; Shen M; Tang P; Song K; Lai B; Pan Z
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-doping polymethyl methacrylate and copper tailings to improve the performances of sludge-derived particle electrode.
    Meng HS; Chen C; Yan ZR; Li XY; Xu J; Sheng GP
    Water Res; 2019 Nov; 165():115016. PubMed ID: 31470283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Oxidation of EDTA in Nuclear Wastewater Using Platinum Supported on Activated Carbon Fibers.
    Zhao B; Zhu W; Mu T; Hu Z; Duan T
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28754016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of Biochar Modified with Different Functional Groups for Efficient Removal of Pb(II) and Ni(II).
    Liu C; Lin J; Chen H; Wang W; Yang Y
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and efficient removal of Ni(2+) from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles.
    Chen J; Hao Y; Chen M
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1671-1679. PubMed ID: 23949109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design.
    Mateen QS; Khan SU; Islam DT; Khan NA; Farooqi IH
    Water Environ Res; 2020 Sep; 92(9):1350-1362. PubMed ID: 32198904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter.
    Kumari S; Kumar RN
    Chemosphere; 2021 Jun; 273():128571. PubMed ID: 33268098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Mn removal from aqueous solutions through electrocoagulation.
    Omranpour Shahreza S; Mokhtarian N; Behnam S
    Environ Technol; 2020 Mar; 41(7):890-900. PubMed ID: 30122127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb
    Pap S; Radonić J; Trifunović S; Adamović D; Mihajlović I; Vojinović Miloradov M; Turk Sekulić M
    J Environ Manage; 2016 Dec; 184(Pt 2):297-306. PubMed ID: 27729179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.