These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 36738523)

  • 1. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers.
    Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T
    Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pushing boundaries in 3D printing: Economic pressure filament extruder for producing polymeric and polymer-ceramic filaments for 3D printers.
    Podgórski R; Wojasiński M; Ciach T
    HardwareX; 2023 Dec; 16():e00486. PubMed ID: 37964896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3D-Printed Scaffolds with Multiscale Porosity.
    Podgórski R; Wojasiński M; Małolepszy A; Jaroszewicz J; Ciach T
    ACS Omega; 2024 Jul; 9(27):29186-29204. PubMed ID: 39005818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks.
    Del-Mazo-Barbara L; Johansson L; Tampieri F; Ginebra MP
    Acta Biomater; 2024 Mar; 177():506-524. PubMed ID: 38360290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds.
    Nevado P; Lopera A; Bezzon V; Fulla MR; Palacio J; Zaghete MA; Biasotto G; Montoya A; Rivera J; Robledo SM; Estupiñan H; Paucar C; Garcia C
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111013. PubMed ID: 32993985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, morphological, mechanical and biological performance of 3D printed poly(ϵ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications.
    Barbosa TV; Dernowsek JA; Tobar RJR; Casali BC; Fortulan CA; Ferreira EB; Selistre-de-Araújo HS; Branciforti MC
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35948004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review.
    Kumar P; Shamim ; Muztaba M; Ali T; Bala J; Sidhu HS; Bhatia A
    Ann Biomed Eng; 2024 May; 52(5):1184-1194. PubMed ID: 38418691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites.
    Romero-Araya P; Pino V; Nenen A; Cárdenas V; Pavicic F; Ehrenfeld P; Serandour G; Lisoni JG; Moreno-Villoslada I; Flores ME
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Composite Lactide-Mineral 3D-Printed Scaffold for Bone Repair and Regeneration.
    Fairag R; Li L; Ramirez-GarciaLuna JL; Taylor MS; Gaerke B; Weber MH; Rosenzweig DH; Haglund L
    Front Cell Dev Biol; 2021; 9():654518. PubMed ID: 34307346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional (3D) synthetic printing for the manufacture of non-biodegradable models, tools and implants used in surgery: a review of current methods.
    Kirby B; Kenkel JM; Zhang AY; Amirlak B; Suszynski TM
    J Med Eng Technol; 2021 Jan; 45(1):14-21. PubMed ID: 33215944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets.
    Doolaanea A; Latif N; Singh S; Kumar M; Safa'at MF; Alfatama M; Edros R; Bhatia A
    AAPS PharmSciTech; 2023 May; 24(5):116. PubMed ID: 37160772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printed Composite Scaffolds in Bone Tissue Engineering: A Systematic Review.
    Mohaghegh S; Hosseini SF; Rad MR; Khojasteh A
    Curr Stem Cell Res Ther; 2022; 17(7):648-709. PubMed ID: 35135465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study.
    Nayak VV; Sanjairaj V; Behera RK; Smay JE; Gupta N; Coelho PG; Witek L
    J Biomed Mater Res B Appl Biomater; 2024 Apr; 112(4):e35402. PubMed ID: 38520704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model.
    Golafshan N; Vorndran E; Zaharievski S; Brommer H; Kadumudi FB; Dolatshahi-Pirouz A; Gbureck U; van Weeren R; Castilho M; Malda J
    Biomaterials; 2020 Dec; 261():120302. PubMed ID: 32932172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer.
    Vallejos Baier R; Contreras Raggio JI; Toro Arancibia C; Bustamante M; Pérez L; Burda I; Aiyangar A; Vivanco JF
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111945. PubMed ID: 33812577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.