These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36738823)

  • 1. Correlation between sphingomyelin and the membrane stability of mammalian erythrocytes.
    Yamaguchi T; Hirakawa R; Ochiai H
    Comp Biochem Physiol B Biochem Mol Biol; 2023; 265():110833. PubMed ID: 36738823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Cholesterol on Membrane Stability of Human Erythrocytes.
    Yamaguchi T; Ishimatu T
    Biol Pharm Bull; 2020; 43(10):1604-1608. PubMed ID: 32999171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells.
    Zeidler RB; Kim HD
    J Cell Physiol; 1979 Sep; 100(3):551-61. PubMed ID: 39943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens alpha-toxin.
    Oda M; Matsuno T; Shiihara R; Ochi S; Yamauchi R; Saito Y; Imagawa H; Nagahama M; Nishizawa M; Sakurai J
    J Lipid Res; 2008 May; 49(5):1039-47. PubMed ID: 18263851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane lipid composition and susceptibility to bile salt damage.
    Coleman R; Lowe PJ; Billington D
    Biochim Biophys Acta; 1980 Jun; 599(1):294-300. PubMed ID: 7397151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between Fusobacterium necrophorum hemolysin, erythrocytes and erythrocyte membranes.
    Amoako KK; Goto Y; Misawa N; Xu DL; Shinjo T
    FEMS Microbiol Lett; 1997 May; 150(1):101-6. PubMed ID: 9163913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pleurotolysin, a novel sphingomyelin-specific two-component cytolysin from the edible mushroom Pleurotus ostreatus, assembles into a transmembrane pore complex.
    Tomita T; Noguchi K; Mimuro H; Ukaji F; Ito K; Sugawara-Tomita N; Hashimoto Y
    J Biol Chem; 2004 Jun; 279(26):26975-82. PubMed ID: 15084605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of sphingomyelinase of Bacillus cereus onto erythrocyte membranes.
    Tomita M; Taguchi R; Ikezawa H
    Arch Biochem Biophys; 1983 May; 223(1):202-12. PubMed ID: 6305273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of erythrocytes from several animal species to Vibrio vulnificus hemolysin.
    Yamanaka H; Shimatani S; Tanaka M; Katsu T; Ono B; Shinoda S
    FEMS Microbiol Lett; 1989 Oct; 52(3):251-5. PubMed ID: 2612874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytolytic protein from the edible mushroom, Pleurotus ostreatus.
    Bernheimer AW; Avigad LS
    Biochim Biophys Acta; 1979 Jul; 585(3):451-61. PubMed ID: 573629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between erythrocytes from various animals and emulsions stabilized with various lecithins.
    Ishii F; Nagasaka Y; Ogata H
    J Pharm Sci; 1989 Apr; 78(4):303-6. PubMed ID: 2724093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The action of sphingomyelinase from Bacillus cereus on ATP-depleted bovine erythrocyte membranes and different lipid composition of liposomes.
    Tomita M; Sawada H; Taguchi R; Ikezawa H
    Arch Biochem Biophys; 1987 May; 255(1):127-35. PubMed ID: 3036001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane.
    Borochov H; Zahler P; Wilbrandt W; Shinitzky M
    Biochim Biophys Acta; 1977 Nov; 470(3):382-8. PubMed ID: 410447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas aeruginosa cytotoxin: the influence of sphingomyelin on binding and cation permeability increase in mammalian erythrocytes.
    Crowell KM; Lutz F
    Toxicon; 1989; 27(5):531-40. PubMed ID: 2501911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysenin, a novel sphingomyelin-specific binding protein.
    Yamaji A; Sekizawa Y; Emoto K; Sakuraba H; Inoue K; Kobayashi H; Umeda M
    J Biol Chem; 1998 Feb; 273(9):5300-6. PubMed ID: 9478988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different resistance of mammalian red blood cells to hemolysis by bile salts.
    Salvioli G; Gaetti E; Panini R; Lugli R; Pradelli JM
    Lipids; 1993 Nov; 28(11):999-1003. PubMed ID: 8277831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization.
    Kostić IT; Ilić VL; Đorđević VB; Bukara KM; Mojsilović SB; Nedović VA; Bugarski DS; Veljović ĐN; Mišić DM; Bugarski BM
    Colloids Surf B Biointerfaces; 2014 Oct; 122():250-259. PubMed ID: 25051307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition of neutral lipids from erythrocytes of common mammals.
    Nelson GJ
    J Lipid Res; 1967 Jul; 8(4):374-9. PubMed ID: 6033604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of Cholesterol Side Chain in the Membrane Stability of Human Erythrocytes.
    Yamaguchi T; Manaka C; Ogura A; Nagadome S
    Biol Pharm Bull; 2021; 44(6):888-893. PubMed ID: 34078822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol transfer from rat, human and sheep erythrocytes.
    Murgatroyd JE; Green C
    Comp Biochem Physiol B; 1987; 88(1):23-6. PubMed ID: 3677603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.