BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 36739065)

  • 41. Multiple myeloma: the bone marrow microenvironment and its relation to treatment.
    Andrews SW; Kabrah S; May JE; Donaldson C; Morse HR
    Br J Biomed Sci; 2013; 70(3):110-20. PubMed ID: 24273897
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting the Microenvironment for Treating Multiple Myeloma.
    Neumeister P; Schulz E; Pansy K; Szmyra M; Deutsch AJ
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35886976
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Various Signaling Pathways in Multiple Myeloma Cells and Effects of Treatment on These Pathways.
    Dehghanifard A; Kaviani S; Abroun S; Mehdizadeh M; Saiedi S; Maali A; Ghaffari S; Azad M
    Clin Lymphoma Myeloma Leuk; 2018 May; 18(5):311-320. PubMed ID: 29606369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The bone marrow stromal microenvironment influences myeloma therapeutic response in vitro.
    Cheung WC; Van Ness B
    Leukemia; 2001 Feb; 15(2):264-71. PubMed ID: 11236942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma.
    Sharma NS; Choudhary B
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma.
    Podar K; Richardson PG; Chauhan D; Anderson KC
    Expert Rev Anticancer Ther; 2007 Apr; 7(4):551-66. PubMed ID: 17428175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Overview of Organoid and 3-Dimensional Models in Multiple Myeloma.
    Rodriguez C
    Cancer J; 2021 May-Jun 01; 27(3):239-246. PubMed ID: 34549913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The microenvironment and molecular biology of the multiple myeloma tumor.
    Lemaire M; Deleu S; De Bruyne E; Van Valckenborgh E; Menu E; Vanderkerken K
    Adv Cancer Res; 2011; 110():19-42. PubMed ID: 21704227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma.
    Gupta VA; Matulis SM; Conage-Pough JE; Nooka AK; Kaufman JL; Lonial S; Boise LH
    Blood; 2017 Apr; 129(14):1969-1979. PubMed ID: 28151428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting the bone marrow microenvironment in multiple myeloma.
    Kawano Y; Moschetta M; Manier S; Glavey S; Görgün GT; Roccaro AM; Anderson KC; Ghobrial IM
    Immunol Rev; 2015 Jan; 263(1):160-72. PubMed ID: 25510276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of Resistance in Multiple Myeloma.
    Papadas A; Asimakopoulos F
    Handb Exp Pharmacol; 2018; 249():251-288. PubMed ID: 28315070
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment.
    Hayashi T; Hideshima T; Akiyama M; Richardson P; Schlossman RL; Chauhan D; Munshi NC; Waxman S; Anderson KC
    Mol Cancer Ther; 2002 Aug; 1(10):851-60. PubMed ID: 12492118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone marrow myeloid cells in regulation of multiple myeloma progression.
    Herlihy SE; Lin C; Nefedova Y
    Cancer Immunol Immunother; 2017 Aug; 66(8):1007-1014. PubMed ID: 28378067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma.
    Thangavadivel S; Zelle-Rieser C; Olivier A; Postert B; Untergasser G; Kern J; Brunner A; Gunsilius E; Biedermann R; Hajek R; Pour L; Willenbacher W; Greil R; Jöhrer K
    Oncotarget; 2016 Nov; 7(48):78605-78618. PubMed ID: 27732933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma.
    Xie L; Wei J; Gao Z; Huang H; Ju S; Wang X
    Exp Cell Res; 2022 Jun; 415(1):113113. PubMed ID: 35339472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exosome-derived miR-let-7c promotes angiogenesis in multiple myeloma by polarizing M2 macrophages in the bone marrow microenvironment.
    Tian X; Sun M; Wu H; Chen C; Li H; Qiu S; Wang T; Han J; Xiao Q; Chen K
    Leuk Res; 2021 Jun; 105():106566. PubMed ID: 33848709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma.
    Swamydas M; Murphy EV; Ignatz-Hoover JJ; Malek E; Driscoll JJ
    J Hematol Oncol; 2022 Feb; 15(1):17. PubMed ID: 35172851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of noncoding RNAs in drug resistance in multiple myeloma.
    Li J; Zou J; Wan X; Sun C; Chu Z; Hu Y
    J Cell Physiol; 2020 Nov; 235(11):7681-7695. PubMed ID: 32324301
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Advances in Modeling of Multiple Myeloma in Mice].
    Gu XY; Tang WJ; Li Y; Zhang L; Zheng YH
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2023 Jun; 45(3):512-518. PubMed ID: 37407542
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple myeloma exploits Jagged1 and Jagged2 to promote intrinsic and bone marrow-dependent drug resistance.
    Colombo M; Garavelli S; Mazzola M; Platonova N; Giannandrea D; Colella R; Apicella L; Lancellotti M; Lesma E; Ancona S; Palano MT; Barbieri M; Taiana E; Lazzari E; Basile A; Turrini M; Pistocchi A; Neri A; Chiaramonte R
    Haematologica; 2020 Jul; 105(7):1925-1936. PubMed ID: 31582544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.