BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36739331)

  • 1. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages.
    Sun J; Evans PN; Gagen EJ; Woodcroft BJ; Hedlund BP; Woyke T; Hugenholtz P; Rinke C
    ISME Commun; 2021 Jun; 1(1):30. PubMed ID: 36739331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode.
    Tamarit D; Köstlbacher S; Appler KE; Panagiotou K; De Anda V; Rinke C; Baker BJ; Ettema TJG
    Syst Appl Microbiol; 2024 Jul; 47(4):126525. PubMed ID: 38909391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Lokiarchaeia and Heimdallarchaeia (Asgardarchaeota) by Fluorescence
    Salcher MM; Andrei AŞ; Bulzu PA; Keresztes ZG; Banciu HL; Ghai R
    mSphere; 2020 Jul; 5(4):. PubMed ID: 32727863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrrolysine and selenocysteine use dissimilar decoding strategies.
    Zhang Y; Baranov PV; Atkins JF; Gladyshev VN
    J Biol Chem; 2005 May; 280(21):20740-51. PubMed ID: 15788401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche.
    Bulzu PA; Andrei AŞ; Salcher MM; Mehrshad M; Inoue K; Kandori H; Beja O; Ghai R; Banciu HL
    Nat Microbiol; 2019 Jul; 4(7):1129-1137. PubMed ID: 30936485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenomic Analysis of Metagenome-Assembled Genomes Deciphered Novel Acetogenic Nitrogen-Fixing
    Deb S; Das SK
    Microbiol Spectr; 2022 Jun; 10(3):e0035222. PubMed ID: 35647693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "
    Farag IF; Zhao R; Biddle JF
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction: Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota.
    Sun J; Evans PN; Gagen EJ; Woodcroft BJ; Hedlund BP; Woyke T; Hugenholtz P; Rinke C
    ISME Commun; 2022 Jan; 2(1):6. PubMed ID: 37938604
    [No Abstract]   [Full Text] [Related]  

  • 9. RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
    Mukai T; Crnković A; Umehara T; Ivanova NN; Kyrpides NC; Söll D
    mBio; 2017 May; 8(3):. PubMed ID: 28487430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea.
    Zhang H; Wang M; Wang H; Chen H; Cao L; Zhong Z; Lian C; Zhou L; Li C
    Sci Data; 2022 Aug; 9(1):480. PubMed ID: 35933411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomic Re-Classification and Expansion of the Phylum Chloroflexota Based on over 5000 Genomes and Metagenome-Assembled Genomes.
    Wiegand S; Sobol M; Schnepp-Pesch LK; Yan G; Iqbal S; Vollmers J; Müller JA; Kaster AK
    Microorganisms; 2023 Oct; 11(10):. PubMed ID: 37894270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy).
    Firrincieli A; Negroni A; Zanaroli G; Cappelletti M
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33923677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic Characterization of Candidate Division LCP-89 Reveals an Atypical Cell Wall Structure, Microcompartment Production, and Dual Respiratory and Fermentative Capacities.
    Youssef NH; Farag IF; Hahn CR; Jarett J; Becraft E; Eloe-Fadrosh E; Lightfoot J; Bourgeois A; Cole T; Ferrante S; Truelock M; Marsh W; Jamaleddine M; Ricketts S; Simpson R; McFadden A; Hoff W; Ravin NV; Sievert S; Stepanauskas R; Woyke T; Elshahed M
    Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30902854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic versatility of
    Balbay MG; Shlafstein MD; Cockell C; Cady SL; Prescott RD; Lim DSS; Chain PSG; Donachie SP; Decho AW; Saw JH
    Front Microbiol; 2023; 14():1216591. PubMed ID: 37799600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1.
    Guan Y; Haroon MF; Alam I; Ferry JG; Stingl U
    Environ Microbiol Rep; 2017 Aug; 9(4):404-410. PubMed ID: 28493460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recoding the genetic code with selenocysteine.
    Bröcker MJ; Ho JM; Church GM; Söll D; O'Donoghue P
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):319-23. PubMed ID: 24511637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Life in the Deep Subsurface Aquifer Illuminated by Metagenomics.
    Kadnikov VV; Mardanov AV; Beletsky AV; Karnachuk OV; Ravin NV
    Front Microbiol; 2020; 11():572252. PubMed ID: 33013807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis.
    Zhang Y; Gladyshev VN
    Nucleic Acids Res; 2007; 35(15):4952-63. PubMed ID: 17626042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence.
    Kotini SB; Peske F; Rodnina MV
    Nucleic Acids Res; 2015 Jul; 43(13):6426-38. PubMed ID: 26040702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.